Thresholdless quantum dot nanolaser

被引:64
作者
Ota, Yasutomo [1 ]
Kakuda, Masahiro [1 ]
Watanabe, Katsuyuki [1 ]
Iwamoto, Satoshi [1 ,2 ]
Arakawa, Yasuhiko [1 ,2 ]
机构
[1] Univ Tokyo, Inst Nano Quantum Informat Elect, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
PHOTONIC-CRYSTAL; MICROCAVITY LASERS; NANOCAVITY; LINEWIDTH; EMISSION; GAIN;
D O I
10.1364/OE.25.019981
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thresholdless lasing is an outstanding challenge in laser science and is achievable only in devices having near unity quantum efficiency even when not lasing. Such lasers are expected to exhibit featureless linear light output curves. However, such thresholdless behavior hinders identification of the laser transition, triggering a long-lasting argument on how to identify the lasing. Here, we demonstrate thresholdless lasing in a semiconductor quantum dot nanolaser with a photonic crystal nanocavity. We employ cavity resonant excitation for enabling the thresholdless operation via focused carrier injection into high cavity field regions. Under conventional (above bandgap) excitation, the same nanolaser exhibits a typical thresholded lasing transition, thereby facilitating a systematic comparison between the thresholdless and thresholded laser transitions in the single device. Our approach enables a clear verification of the thresholdless lasing and reveals core elements for its realization using quantum dots, paving the way to the development of ultimately energyefficient nanolasers. (C) 2017 Optical Society of America
引用
收藏
页码:19981 / 19994
页数:14
相关论文
共 41 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   QUANTUM-WELL LASERS GAIN, SPECTRA, DYNAMICS [J].
ARAKAWA, Y ;
YARIV, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) :1887-1899
[3]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[4]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[5]   ON THE LINEWIDTH OF MICROCAVITY LASERS [J].
BJORK, G ;
KARLSSON, A ;
YAMAMOTO, Y .
APPLIED PHYSICS LETTERS, 1992, 60 (03) :304-306
[6]   DEFINITION OF A LASER THRESHOLD [J].
BJORK, G ;
KARLSSON, A ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1994, 50 (02) :1675-1680
[7]   Evolution of the onset of coherence in a family of photonic crystal nanolasers [J].
Choi, Y.-S. ;
Rakher, M. T. ;
Hennessy, K. ;
Strauf, S. ;
Badolato, A. ;
Petroff, P. M. ;
Bouwmeester, D. ;
Hu, E. L. .
APPLIED PHYSICS LETTERS, 2007, 91 (03)
[8]   Emission properties of nanolasers during the transition to lasing [J].
Chow, Weng W. ;
Jahnke, Frank ;
Gies, Christopher .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e201-e201
[9]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[10]   Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser [J].
Hachuda, Shoji ;
Watanabe, Takumi ;
Takahashi, Daichi ;
Baba, Toshihiko .
OPTICS EXPRESS, 2016, 24 (12) :12886-12892