Brillouin-zone integration scheme for many-body density of states: Tetrahedron method combined with cluster perturbation theory

被引:9
作者
Seki, K. [1 ,2 ]
Yunoki, S. [1 ,2 ,3 ]
机构
[1] RIKEN, Computat Condensed Matter Phys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] RIKEN, AICS, Computat Mat Sci Res Team, Kobe, Hyogo 6500047, Japan
[3] RIKEN, Computat Quantum Matter Res Team, CEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
HIGH-TEMPERATURE SUPERCONDUCTORS; SELF-ENERGY; PARTICLE EXCITATIONS; CORRELATED ELECTRONS; HUBBARD-MODEL; FERMI LIQUIDS; LANDAU THEORY; SYSTEMS; DERIVATION; INSULATOR;
D O I
10.1103/PhysRevB.93.245115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By combining the tetrahedron method with the cluster perturbation theory (CPT), we present an accurate method to numerically calculate the density of states of interacting fermions without introducing the Lorentzian broadening parameter. or the numerical extrapolation of eta -> 0. The method is conceptually based on the notion of the effective single-particle Hamiltonian which can be subtracted in the Lehmann representation of the single-particle Green's function within the CPT. Indeed, we show the general correspondence between the self-energy and the effective single-particle Hamiltonian which describes exactly the single-particle excitation energies of interacting fermions. The detailed formalism is provided for two-dimensional multiorbital systems and a benchmark calculation is performed for the two-dimensional single-band Hubbard model. The method can be adapted straightforwardly to symmetry-broken states, three-dimensional systems, and finite-temperature calculations.
引用
收藏
页数:11
相关论文
共 71 条
[1]   Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects [J].
Aichhorn, M. ;
Arrigoni, E. ;
Potthoff, M. ;
Hanke, W. .
PHYSICAL REVIEW B, 2006, 74 (23)
[2]   Low-temperature Lanczos method for strongly correlated systems [J].
Aichhorn, M ;
Daghofer, M ;
Evertz, HG ;
von der Linden, W .
PHYSICAL REVIEW B, 2003, 67 (16)
[3]   Superconducting gap in the hubbard model and the two-gap energy scales of High-Tc cuprate superconductors [J].
Aichhorn, M. ;
Arrigoni, E. ;
Huang, Z. B. ;
Hanke, W. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[4]   Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice [J].
Assaad, Fakher F. ;
Herbut, Igor F. .
PHYSICAL REVIEW X, 2013, 3 (03)
[5]  
Avella A, 2012, SPRINGER SER SOLID-S, V171, P1, DOI 10.1007/978-3-642-21831-6
[6]   Impurity-induced states in conventional and unconventional superconductors [J].
Balatsky, A. V. ;
Vekhter, I. ;
Zhu, Jian-Xin .
REVIEWS OF MODERN PHYSICS, 2006, 78 (02) :373-433
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   Mott p-n junctions in layered materials [J].
Charlebois, M. ;
Hassan, S. R. ;
Karan, R. ;
Senechal, D. ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2013, 87 (03)
[9]   Doping-driven evolution of the superconducting state from a doped Mott insulator: Cluster dynamical mean-field theory [J].
Civelli, M. .
PHYSICAL REVIEW B, 2009, 79 (19)
[10]   CORRELATED ELECTRONS IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
DAGOTTO, E .
REVIEWS OF MODERN PHYSICS, 1994, 66 (03) :763-840