Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity

被引:53
作者
Cima, Joseph A. [1 ]
Garcia, Stephan Ramon [2 ]
Ross, William T. [3 ]
Wogen, Warren R. [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[3] Univ Richmond, Dept Math & Comp Sci, Richmond, VA 23173 USA
关键词
truncated Toeplitz operators; spatial isomorphism; unitary equivalence; COMPLEX SYMMETRIC-OPERATORS; EVERY MATRIX; SHIFTS;
D O I
10.1512/iumj.2010.59.4097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A truncated Toeplitz operator A phi : K(Theta) -> K(Theta) is the compression of a Toeplitz operator T(phi): H(2) -> H(2) to a model space K(Theta) := H(2) circle minus Theta H(2). For Theta inner, let T(Theta) denote the set of all bounded truncated Toeplitz operators on K(Theta). Our main result is a necessary and sufficient condition on inner functions Theta(1) and Theta(2) which guarantees that T(Theta 1) and T(Theta 2) are spatially isomorphic (i.e., UT(Theta 1), = T(Theta 2)U for some unitary U : K(Theta 1) -> K(Theta 2)). We also study operators which are unitarily equivalent to truncated Toeplitz operators and we prove that every operator on a finite dimensional Hilbert space is similar to a truncated Toeplitz operator.
引用
收藏
页码:595 / 620
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 2006, MATH SURVEYS MONOGRA
[2]  
[Anonymous], U ARKANSAS LECT NOTE
[3]  
[Anonymous], 1970, SERIES MONOGRAPHS TX
[4]  
[Anonymous], 2007, GRADUATE TEXTS MATH
[5]  
Bercovici H., 1988, Mathematical Surveys and Monographs, V26
[6]   The characteristic function of a complex symmetric contraction [J].
Chevrot, Nicolas ;
Fricain, Emmanuel ;
Timotin, Dan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2877-2886
[7]  
CIMA JA, 2002, MATH SURVEYS MONOGRA, V79
[8]   ONE DIMENSIONAL PERTURBATIONS OF RESTRICTED SHIFTS [J].
CLARK, DN .
JOURNAL D ANALYSE MATHEMATIQUE, 1972, 25 :169-&
[9]  
Conway J. B., 2000, A course in operator theory
[10]   MULTIPLIERS BETWEEN INVARIANT SUBSPACES OF THE BACKWARD SHIFT [J].
CROFOOT, RB .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 166 (02) :225-246