MMKG: Multi-modal Knowledge Graphs

被引:137
作者
Liu, Ye [1 ]
Li, Hui [2 ]
Garcia-Duran, Alberto [3 ]
Niepert, Mathias [4 ]
Onoro-Rubio, Daniel [4 ]
Rosenblum, David S. [1 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
[2] Xiamen Univ, Xiamen, Fujian, Peoples R China
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[4] NEC Labs Europe, Heidelberg, Germany
来源
SEMANTIC WEB, ESWC 2019 | 2019年 / 11503卷
关键词
D O I
10.1007/978-3-030-21348-0_30
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present Mmkg, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs. We validate the utility of Mmkg in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
引用
收藏
页码:459 / 474
页数:16
相关论文
共 25 条
[1]  
Achichi M., 2016, CEUR WORKSHOP PROC, V1766, P73
[2]  
[Anonymous], P 3 INT C LEARNING R
[3]   DBpedia: A nucleus for a web of open data [J].
Auer, Soeren ;
Bizer, Christian ;
Kobilarov, Georgi ;
Lehmann, Jens ;
Cyganiak, Richard ;
Ives, Zachary .
SEMANTIC WEB, PROCEEDINGS, 2007, 4825 :722-+
[4]  
Bollacker K., 2008, P 2008 ACM SIGMOD IN, P1247
[5]  
Bordes Antoine, 2013, ADV NEURAL INF PROCE, P2787
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Dredze M., 2010, P 23 INT C COMP LING, P277, DOI [DOI 10.3115/1119176.1119181, 10.3115/1119176.1119181]
[8]  
Galarraga L.A., 2013, P AKBC CIKM 2013, P43
[9]  
Galárraga L, 2015, VLDB J, V24, P707, DOI 10.1007/s00778-015-0394-1
[10]  
García-Durán A, 2018, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P372