Quartic graphs which are Bakry-Emery curvature sharp

被引:3
作者
Cushing, David [1 ]
Kamtue, Supanat [1 ]
Peyerimhoff, Norbert [1 ]
May, Leyna Watson [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
Quartic graphs; Bakry-Emery curvature; Computer classification;
D O I
10.1016/j.disc.2019.111767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of all connected quartic graphs which are (infinity) curvature sharp in all vertices with respect to Bakry-Emery curvature. The result is based on a computer classification by F. Gurr and L. Watson May and a combinatorial case by case investigation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 10 条
[1]  
[Anonymous], ARXIV190210665
[2]  
[Anonymous], UNIVERSITEXT
[3]  
[Anonymous], ARXIV170506789
[4]  
Bakry D., 1985, Sem. Prob. XIX. Lect. Notes in Maths., P177, DOI 10.1007/BFb0075847
[5]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[6]   The Graph Curvature Calculator and the Curvatures of Cubic Graphs [J].
Cushing, David ;
Kangaslampi, Riikka ;
Lipiainen, Valtteri ;
Liu, Shiping ;
Stagg, George W. .
EXPERIMENTAL MATHEMATICS, 2022, 31 (02) :583-595
[7]   Bakry-Emery Curvature Functions on Graphs [J].
Cushing, David ;
Liu, Shiping ;
Peyerimhoff, Norbert .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (01) :89-143
[8]   Discrete Curvature and Abelian Groups [J].
Klartag, Bo'az ;
Kozma, Gady ;
Ralli, Peter ;
Tetali, Prasad .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03) :655-674
[9]   Bakry-Emery curvature and diameter bounds on graphs [J].
Liu, Shiping ;
Muench, Florentin ;
Peyerimhoff, Norbert .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[10]  
Schmuckenschlager M., 1999, CONVEX GEOMETRIC ANA, V34, P189