Electrochemical Reduction of Carbon Dioxide to Formic Acid in Ionic Liquid [Emim][N(CN)2]/Water System

被引:31
|
作者
Zhang, Xiangjing [1 ,2 ]
Zhao, Ying [1 ,2 ]
Hu, Shuozhen [1 ]
Gliege, Marisa Elise [1 ]
Liu, Yumin [1 ,2 ]
Liu, Runjing [1 ,2 ]
Scudiero, Louis
Hu, Yongqi [1 ,2 ,3 ,4 ]
Ha, Su [1 ]
机构
[1] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
[2] Hebei Univ Sci & Technol, Sch Chem & Pharmaceut Engn, Shijiazhuang 050018, Hebei, Peoples R China
[3] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[4] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
关键词
CO2; reduction; electrolysis; formic acid; ionic liquid; 1-ethyl-3-methylimidazolium dicyanamide; CO2; REDUCTION; SELECTIVE CONVERSION; TIN CATHODE; FORMATE; ELECTRODE; SN; TEMPERATURE; EFFICIENCY; SOLVENT;
D O I
10.1016/j.electacta.2017.06.112
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical reduction of CO2 to formic acid or formate is a promising process for addressing technological challenges of transporting and storing energy produced by intermittent renewable energy sources. However, this electrochemical CO2 conversion process requires high overpotentials to activate CO2 into "an energetically unfavorable" radical anion intermediate on metal electrodes under the aqueous electrolyte systems. For our present study, we introduce a novel solvent additive such as 1-ethyl-3-methylimidazolium dicyanamide ([Emim][N(CN)(2)]) ionic liquid into the aqueous solution to increase the electrochemical reduction activity of CO2 for the formic acid formation, to increase the CO2 solubility, and to suppress the competitive hydrogen evolution reaction. Cyclic voltammetry is performed in an [Emim][N(CN)(2)] aqueous solution on a Sn powder electrode to determine the onset potential of CO2 electrolysis and its electrochemical stability. In addition, CO2 electrolysis is carried out by chronoamperometry measurements at various fixed potentials and electrolyte concentrations to understand their effects on the faradaic efficiency for the conversion of CO2 into the formic acid. The maximum faradaic efficiency obtained during electrolysis with a 0.5 M concentration of [Emim][N(CN)(2)] is 81.9% towards the formation of formic acid at -1.2 V vs. RHE and at the overpotential of 1.08 V. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [21] Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts
    Lu, Lu
    Sun, Xiaofu
    Ma, Jun
    Zhu, Qinggong
    Wu, Congyi
    Yang, Dexin
    Han, Buxing
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (02) : 228 - 235
  • [22] Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid
    Martindale, Benjamin C. M.
    Compton, Richard G.
    CHEMICAL COMMUNICATIONS, 2012, 48 (52) : 6487 - 6489
  • [23] Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid
    Hollingsworth, Nathan
    Taylor, S. F. Rebecca
    Galante, Miguel T.
    Jacquemin, Johan
    Longo, Claudia
    Holt, Katherine B.
    de Leeuw, Nora H.
    Hardacre, Christopher
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (47) : 14164 - 14168
  • [24] Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid
    Yang, Fangqi
    Jiang, Chang
    Ma, Mingfeng
    Shu, Fenghao
    Mao, Xinyu
    Yu, Weikang
    Wang, Jun
    Zeng, Zheling
    Deng, Shuguang
    CHEMICAL ENGINEERING JOURNAL, 2020, 400 (400)
  • [25] Aromatic Ester-Functionalized Ionic Liquid for Highly Efficient CO2Electrochemical Reduction to Oxalic Acid
    Yang, Yingliang
    Gao, Hongshuai
    Feng, Jiaqi
    Zeng, Shaojuan
    Liu, Lei
    Liu, Licheng
    Ren, Baozeng
    Li, Tao
    Zhang, Suojiang
    Zhang, Xiangping
    CHEMSUSCHEM, 2020, 13 (18) : 4900 - 4905
  • [26] Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid
    Kim, Hak-Yoon
    Choi, Insoo
    Ahn, Sang Hyun
    Hwang, Seung Jun
    Yoo, Sung Jong
    Han, Jonghee
    Kim, Jihyun
    Park, Hansoo
    Jang, Jong Hyun
    Kim, Soo-Kil
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (29) : 16506 - 16512
  • [27] Modeling the Electrochemical Conversion of Carbon Dioxide to Formic Acid or Formate at Elevated Pressures
    Morrison, Andrew R. T.
    van Beusekom, Vincent
    Ramdin, Mahinder
    van den Broeke, Leo J. P.
    Vlugt, Thijs J. H.
    de Jong, Wiebren
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : E77 - E86
  • [28] Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects
    Duarah, Prangan
    Haldar, Dibyajyoti
    Yadav, V. S. K.
    Purkait, Mihir Kumar
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06):
  • [29] Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid
    Yuan, Dandan
    Yan, Cuihong
    Lu, Bin
    Wang, Hongxia
    Zhong, Chongmin
    Cai, Qinghai
    ELECTROCHIMICA ACTA, 2009, 54 (10) : 2912 - 2915
  • [30] Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes
    Natsui, Keisuke
    Iwakawa, Hitomi
    Ikemiya, Norihito
    Nakata, Kazuya
    Einaga, Yasuaki
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (10) : 2639 - 2643