Multi-Channel SPAD Chip for Silicon Photonics With Multi-Photon CoIncidence Detection

被引:9
作者
Incoronato, Alfonso [1 ]
Severini, Fabio [1 ]
Villa, Federica [1 ]
Zappa, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
基金
欧盟地平线“2020”;
关键词
Single-photon avalanche diodes; Photonics; Optical waveguides; Nonlinear optics; System-on-chip; Silicon photonics; Optical imaging; Single photon avalanche diode (SPAD); photon counting; quantum sensing; silicon photonics; photonic integrated circuits; SPECTROSCOPY; GENERATION; SENSOR; ARRAY;
D O I
10.1109/JSTQE.2021.3134071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the design and characterization of a microelectronic chip consisting of 32 independent single-photon counting and multi-photon time-coincidence channels, based on Single Photon Avalanche Diodes (SPADs). The chip aims at easing the assembly together with Silicon Photonics substrates and chips, for a broad spectrum of quantum applications. The chip provides not only 32 independent pulse outputs for multi-channel single-photon counting, but it features other two operation modalities. For single-photon applications, the chip provides the single-hit digital address of the channel detecting the photon among the 32 ones. For multi-photon applications, the chip provides an event-driven pulse every time more than n photons (n selectable between 2 and 4) concurrently trigger different channels. Each detection channel consists of 4 independent SPADs with different diameter (5 mu m, 10 mu m, 20 mu m, and 50 mu m), to easily match the waveguides and collection efficiency.
引用
收藏
页数:7
相关论文
共 27 条
  • [1] Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology
    Berchera, I. Ruo
    Degiovanni, I. P.
    [J]. METROLOGIA, 2019, 56 (02)
  • [2] Burri S., 2017, Instruments, V1, DOI DOI 10.3390/INSTRUMENTS1010006
  • [3] Recent Advances and Future Perspectives of Single-Photon Avalanche Diodes for Quantum Photonics Applications
    Ceccarelli, Francesco
    Acconcia, Giulia
    Gulinatti, Angelo
    Ghioni, Massimo
    Rech, Ivan
    Osellame, Roberto
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (02)
  • [4] Time-gated 128x1 and 8x8 SPAD cameras for 2D photon-counting and 3D time-of-flight maps
    Cusini, Iris
    Pasquinelli, Klaus
    Conca, Enrico
    Villa, Federica
    [J]. QUANTUM OPTICS AND PHOTON COUNTING 2021, 2021, 11771
  • [5] Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications
    Datta, Rupsa
    Heaster, Tiffany M.
    Sharick, Joe T.
    Gillette, Amani A.
    Skala, Melissa C.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (07)
  • [6] Gräfe M, 2014, NAT PHOTONICS, V8, P791, DOI [10.1038/nphoton.2014.204, 10.1038/NPHOTON.2014.204]
  • [7] Quantum random number generators
    Herrero-Collantes, Miguel
    Carlos Garcia-Escartin, Juan
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [8] Kleinert M, 2017, PHYS SIMULATION OPTO, VXXV, P220
  • [9] Kleinert M, 2019, IEEE CPMT SYMP JAP, P25, DOI [10.1109/icsj47124.2019.8998655, 10.1109/ICSJ47124.2019.8998655]
  • [10] Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications
    Kufcsak, A.
    Erdogan, A.
    Walker, R.
    Ehrlich, K.
    Tanner, M.
    Megia-Fernandez, A.
    Scholefield, E.
    Emanuel, P.
    Dhaliwal, K.
    Bradley, M.
    Henderson, R. K.
    Krstajic, N.
    [J]. OPTICS EXPRESS, 2017, 25 (10): : 11103 - 11123