Invariance Principle for a Potts Interface Along a Wall

被引:7
作者
Ioffe, Dmitry [1 ]
Ott, Sebastien [2 ]
Velenik, Yvan [3 ]
Wachtel, Vitali [4 ]
机构
[1] Technion, Fac IE&M, Haifa 32000, Israel
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Rome 00146, Italy
[3] Univ Geneva, Sect Math, Geneva 1211, Switzerland
[4] Univ Augsburg, Inst Math, Augsburg 86135, Germany
关键词
Potts model; Random cluster model; Interface; Ornstein-Zernike theory; Invariance principle; Brownian excursion; PHASE-SEPARATION LINE; ORNSTEIN-ZERNIKE THEORY; LIMIT-THEOREMS; MODELS;
D O I
10.1007/s10955-020-02546-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider nearest-neighbour two-dimensional Potts models, with boundary conditions leading to the presence of an interface along the bottom wall of the box. We show that, after a suitable diffusive scaling, the interface weakly converges to the standard Brownian excursion.
引用
收藏
页码:832 / 861
页数:30
相关论文
共 50 条