Invariance Principle for a Potts Interface Along a Wall

被引:7
|
作者
Ioffe, Dmitry [1 ]
Ott, Sebastien [2 ]
Velenik, Yvan [3 ]
Wachtel, Vitali [4 ]
机构
[1] Technion, Fac IE&M, Haifa 32000, Israel
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Rome 00146, Italy
[3] Univ Geneva, Sect Math, Geneva 1211, Switzerland
[4] Univ Augsburg, Inst Math, Augsburg 86135, Germany
关键词
Potts model; Random cluster model; Interface; Ornstein-Zernike theory; Invariance principle; Brownian excursion; PHASE-SEPARATION LINE; ORNSTEIN-ZERNIKE THEORY; LIMIT-THEOREMS; MODELS;
D O I
10.1007/s10955-020-02546-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider nearest-neighbour two-dimensional Potts models, with boundary conditions leading to the presence of an interface along the bottom wall of the box. We show that, after a suitable diffusive scaling, the interface weakly converges to the standard Brownian excursion.
引用
收藏
页码:832 / 861
页数:30
相关论文
共 50 条
  • [21] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [22] Holderian invariance principle for linear processes
    Juodis, Mindaugas
    Rackauskas, Alfredas
    Suquet, Charles
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 5 : 47 - 64
  • [23] The invariance principle in baseball: new evidence
    Rockerbie, Duane W.
    APPLIED ECONOMICS, 2018, 50 (23) : 2613 - 2621
  • [24] An Invariance Principle to Ferrari–Spohn Diffusions
    Dmitry Ioffe
    Senya Shlosman
    Yvan Velenik
    Communications in Mathematical Physics, 2015, 336 : 905 - 932
  • [25] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [26] Invariance principle via orthomartingale approximation
    Giraudo, Davide
    STOCHASTICS AND DYNAMICS, 2018, 18 (06)
  • [27] A strong invariance principle for nonconventional sums
    Kifer, Yuri
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (1-2) : 463 - 486
  • [28] An invariance principle for nonlinear switched systems
    Bacciotti, A
    Mazzi, L
    SYSTEMS & CONTROL LETTERS, 2005, 54 (11) : 1109 - 1119
  • [29] A strong invariance principle for nonconventional sums
    Yuri Kifer
    Probability Theory and Related Fields, 2013, 155 : 463 - 486
  • [30] An Invariance Principle for Fractional Brownian Sheets
    Yizao Wang
    Journal of Theoretical Probability, 2014, 27 : 1124 - 1139