Wind energy generation is increasing its participation in energy distribution and has to compete with other energy sources that are not so variable in terms of generated active power. It is important to consider that nowadays, the active power demand can vary quite rapidly and different sources of electricity generation must be available. In the case of wind energy, wind speed predictions are an important tool to help producers make the best decisions when selling the energy produced. These decisions are crucial in the electricity market, because of the economic benefits for producers and consequently their profitability, depends on them. Hence, the optimisation of wind energy production and consequently the economic benefits derived from its connection to the grid becomes one of the most important problems to be solved in the very close future. This paper presents two control strategies developed for the active power regulation of wind farms made up with double fed induction generators, in order to obtain the maximum active power from the wind hitting the blades of a mill. The dynamic performance of a real 660kW generator is analysed when both algorithms are applied.