Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation

被引:5
作者
Khenissy, S. [2 ,3 ]
Rebai, Y. [3 ,4 ]
Zaag, H. [1 ]
机构
[1] Univ Paris 13, Inst Galilee, UMR 7539, LAGA, F-93430 Villetaneuse, France
[2] Univ Tunis El Manar, Inst Super Informat, Dept Math Appl, Ariana 2037, Tunisia
[3] Univ Tunis El Manar FST, UR Anal Non Lineaire & Geometrie 03 UR 15 01, Tunis, Tunisia
[4] Univ 7 Novembre Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Bizerte, Tunisia
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2011年 / 28卷 / 01期
关键词
BEHAVIOR; NONEXISTENCE; REGULARITY; SET; UNIVERSALITY; EXISTENCE; THEOREMS;
D O I
10.1016/j.anihpc.2010.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlinearity. Given a blow-up point a, we have from earlier literature, the asymptotic behavior in similarity variables. Our aim is to discuss the stability of that behavior, with respect to perturbations in the blow-up point and in initial data. Introducing the notion of "profile order", we show that it is upper semicontinuous, and continuous only at points where it is a local minimum. (c) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 36 条
[1]  
Alinhac S., 2002, JOURNEES EQUATIONS D, pp 33
[2]  
[Anonymous], 1995, BLOWUP NONLINEAR HYP
[4]   UNIVERSALITY IN BLOW-UP FOR NONLINEAR HEAT-EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A .
NONLINEARITY, 1994, 7 (02) :539-575
[5]   ON THE BLOWUP OF MULTIDIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
FILIPPAS, S ;
LIU, WX .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (03) :313-344
[6]   REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP [J].
FILIPPAS, S ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (07) :821-869
[7]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[8]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514
[9]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[10]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40