Multidimensional Modeling of Steam-Methane-Reforming-Based Fuel Processor for Hydrogen Production

被引:5
|
作者
Oh, Kyeongmin [1 ]
Kim, Dowan [1 ]
Lim, Kisung [1 ]
Ju, Hyunchul [1 ]
机构
[1] Inha Univ, Dept Mech Engn, 100 Inha Ro, Incheon 22212, South Korea
关键词
Fuel processor; hydrogen production; steam-reforming water gas shift; preferential oxidation; numerical simulation; WATER-GAS SHIFT; SIMULATION;
D O I
10.1080/15361055.2020.1712995
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
W present a three-dimensional (3-D) steam-methane-reforming (SMR) model consisting of a steam-reforming (SR) reactor, water gas shift reactor, preferential oxidation reactor, catalytic burner, heat exchangers, and balance of plant components. The mass and energy balance equations are derived considering the kinetic expressions of various SMR reactions and implemented in the commercial computational fluid dynamics software program Fluent by employing user-defined functions. The 3-D SMR model is then applied to a 10-kW SR reformer geometry and simulated for comparison with in-house experimental data. The simulation results and the experimental data show good agreement, and the model accurately captures the experimental exhaust gas compositions and the reactor outlet temperatures. The proposed 3-D simulation tool for predicting various transport and chemical processes is highly desirable from the viewpoint of design and optimization of full-scale SMR-based fuel processors.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 50 条
  • [1] Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells
    Roh, Hyun-Seog
    Jun, Ki-Won
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2009, 30 (01): : 153 - 156
  • [2] Low temperature methane steam reforming for hydrogen production for fuel cells
    Department of Environmental Engineering, Yonsei University, Wonju, Gangwon 220-710, Korea, Republic of
    不详
    Bull. Korean Chem. Soc., 2009, 1 (153-156):
  • [3] Modeling of hydrogen production by sorption enhanced methane steam reforming reactions
    Key Laboratory for Thermal Science and Power Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2008, 36 (01): : 99 - 103
  • [4] Modeling and analysis of hydrogen production in steam methane reforming (SMR) process
    Bahadori, Alireza
    Kashiwao, Tomoaki
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (12) : 1425 - 1435
  • [5] DYNAMIC MODELING OF NUCLEAR HYDROGEN PRODUCTION USING METHANE STEAM REFORMING
    Li, Junyi
    Dong, Zhe
    Li, Bowen
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 4, 2021,
  • [6] Production of hydrogen by unmixed steam reforming of methane
    Dupont, V.
    Ross, A. B.
    Knight, E.
    Hanley, I.
    Twigg, M. V.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (11) : 2966 - 2979
  • [7] Steam Plasma Methane Reforming for Hydrogen Production
    M. Hrabovsky
    M. Hlina
    V. Kopecky
    A. Maslani
    P. Krenek
    A. Serov
    O. Hurba
    Plasma Chemistry and Plasma Processing, 2018, 38 : 743 - 758
  • [8] Steam Plasma Methane Reforming for Hydrogen Production
    Hrabovsky, M.
    Hlina, M.
    Kopecky, V.
    Maslani, A.
    Krenek, P.
    Serov, A.
    Hurba, O.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2018, 38 (04) : 743 - 758
  • [9] Mathematical Modeling and Experimental Study of Hydrogen Production by Catalytic Steam Reforming of Methane
    Sadooghi, Parham
    Rauch, Reinhard
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6A, 2014,
  • [10] Thermodynamic Analysis of Steam Methane Reforming for Hydrogen Production
    Zhang Qi
    Han Daying
    Jiang Zhongrui
    Wu Kaixian
    Zhu Zibin
    2011 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS SCIENCE AND ENGINEERING (ICESSE 2011), VOL 3, 2011, : 359 - 365