A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking

被引:5
作者
Garcia-Nieto, Jose [1 ]
Lopez-Camacho, Esteban [1 ]
Garcia Godoy, Maria Jesus [1 ]
Nebro, Antonio J. [1 ]
Durillo, Juan J. [2 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Comp Sci, Khaos Res Grp, Campus Teatinos, Malaga, Spain
[2] Univ Innsbruck, Distributed & Parallel Syst Grp, Innsbruck, Austria
来源
SWARM INTELLIGENCE | 2016年 / 9882卷
关键词
Multi-objective optimization; Particle Swarm Optimization; Molecular docking; Archiving strategies; Algorithm comparison; OPTIMIZERS; ALGORITHM;
D O I
10.1007/978-3-319-44427-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.
引用
收藏
页码:40 / 52
页数:13
相关论文
共 19 条
[11]   AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility [J].
Morris, Garrett M. ;
Huey, Ruth ;
Lindstrom, William ;
Sanner, Michel F. ;
Belew, Richard K. ;
Goodsell, David S. ;
Olson, Arthur J. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (16) :2785-2791
[12]  
Nebro AJ, 2009, MCDM: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING, P66
[13]   Analysis of Leader Selection Strategies in a Multi-Objective Particle Swarm Optimizer [J].
Nebro, Antonio J. ;
Durillo, Juan J. ;
Coello Coello, Carlos A. .
2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, :3153-3160
[14]   Multilevel Parallelization of AutoDock 4.2 [J].
Norgan, Andrew P. ;
Coffman, Paul K. ;
Kocher, Jean-Pierre A. ;
Katzmann, David J. ;
Sosa, Carlos P. .
JOURNAL OF CHEMINFORMATICS, 2011, 3
[15]  
Sandoval-Perez Angelica, 2013, Genetic Programming. 16th European Conference (EuroGP 2013). Proceedings, P181, DOI 10.1007/978-3-642-37207-0_16
[16]  
Sierra MR, 2005, LECT NOTES COMPUT SC, V3410, P505
[17]   MOEA/D: A multiobjective evolutionary algorithm based on decomposition [J].
Zhang, Qingfu ;
Li, Hui .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (06) :712-731
[18]   Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach [J].
Zitzler, E ;
Thiele, L .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (04) :257-271
[19]   Performance assessment of multiobjective optimizers: An analysis and review [J].
Zitzler, E ;
Thiele, L ;
Laumanns, M ;
Fonseca, CM ;
da Fonseca, VG .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :117-132