A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking

被引:5
作者
Garcia-Nieto, Jose [1 ]
Lopez-Camacho, Esteban [1 ]
Garcia Godoy, Maria Jesus [1 ]
Nebro, Antonio J. [1 ]
Durillo, Juan J. [2 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Comp Sci, Khaos Res Grp, Campus Teatinos, Malaga, Spain
[2] Univ Innsbruck, Distributed & Parallel Syst Grp, Innsbruck, Austria
来源
SWARM INTELLIGENCE | 2016年 / 9882卷
关键词
Multi-objective optimization; Particle Swarm Optimization; Molecular docking; Archiving strategies; Algorithm comparison; OPTIMIZERS; ALGORITHM;
D O I
10.1007/978-3-319-44427-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.
引用
收藏
页码:40 / 52
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 2000, HDB PARAMETRIC NONPA
[2]  
Coello C. A., 2004, IEEE TRANS EVOL COMP, V8, P3
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]  
Durillo JJ, 2009, LECT NOTES COMPUT SC, V5467, P495, DOI 10.1007/978-3-642-01020-0_39
[5]   MoDock: A multi-objective strategy improves the accuracy for molecular docking [J].
Gu, Junfeng ;
Yang, Xu ;
Kang, Ling ;
Wu, Jinying ;
Wang, Xicheng .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2015, 10
[6]   Molecular docking with multi-objective particle swarm optimization [J].
Janson, Stefan ;
Merkle, Daniel ;
Middendorf, Martin .
APPLIED SOFT COMPUTING, 2008, 8 (01) :666-675
[7]   Solving Molecular Docking Problems with Multi-Objective Metaheuristics [J].
Jesus Garcia-Godoy, Maria ;
Lopez-Camacho, Esteban ;
Garcia-Nieto, Jose ;
Nebro, Antonio J. ;
Aldana-Montes, Jose F. .
MOLECULES, 2015, 20 (06) :10154-10183
[8]  
Lopez-Camacho E., 2016, 3 INT C ALG COMP BIO
[9]   Solving molecular flexible docking problems with metaheuristics: A comparative study [J].
Lopez-Camacho, Esteban ;
Garcia Godoy, Maria Jesus ;
Garcia-Nieto, Jose ;
Nebro, Antonio J. ;
Aldana-Montes, Jose F. .
APPLIED SOFT COMPUTING, 2015, 28 :379-393
[10]   jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework [J].
Lopez-Camacho, Esteban ;
Garcia Godoy, Maria Jesus ;
Nebro, Antonio J. ;
Aldana-Montes, Jose F. .
BIOINFORMATICS, 2014, 30 (03) :437-438