Integro-differential equations for option prices in exponential Levy models

被引:103
作者
Cont, R [1 ]
Voltchkova, E [1 ]
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
关键词
Levy process; jump-diffusion models; option pricing; integro-differential equations; viscosity solutions;
D O I
10.1007/s00780-005-0153-z
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We explore the precise link between option prices in exponential Levy models and the related partial integro-differential equations (PIDEs) in the case of European options and options with single or double barriers. We first discuss the conditions under which options prices are classical solutions of the PIDEs. We show that these conditions may fail in pure jump models and give examples of lack of smoothness of option prices with respect to the underlying. We give sufficient conditions on the Levy triplet for the prices of barrier options to be continuous with respect to the underlying and show that, in a general setting, option prices, in exp-Levy models correspond to viscosity solutions of the pricing PIDE.
引用
收藏
页码:299 / 325
页数:27
相关论文
共 28 条
[1]  
ALILI L, 2005, IN PRESS ANN APPL PR
[2]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[3]  
Andersen L., 2000, REV DERIV RES, V4, P231, DOI DOI 10.1023/A:1011354913068
[4]  
[Anonymous], 1998, J. Math. Systems Estim. Control
[5]  
Barles G., 1997, STOCHASTICS STOCHAST, V60, P57
[6]  
Bensoussan A., 1982, CONTROLE IMPULSIONNE
[7]  
Bertoin J., 1996, Levy Processes
[8]  
BONY JM, 1967, CR ACAD SCI A MATH, V265, P361
[9]  
Chan T, 1999, ANN APPL PROBAB, V9, P504
[10]  
CONT R, IN PRESS SIAM J NUME