OPERATOR FRACTIONAL BROWNIAN MOTION AS LIMIT OF POLYGONAL LINES PROCESSES IN HILBERT SPACE

被引:10
作者
Rackauskas, Alfredas [1 ,2 ]
Suquet, Charles [3 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-2006 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
[3] Univ Lille 1, CNRS, Lab P Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
Fractional Brownian motion; Hilbert space; functional central limit theorem; long memory; linear processes;
D O I
10.1142/S0219493711003152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study long memory phenomenon of functional time series. We consider an operator fractional Brownian motion with values in a Hilbert space defined via operator-valued Hurst coefficient. We prove that this process is a limiting one for polygonal lines constructed from partial sums of time series having space varying long memory.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 26 条
[1]  
Akhiezer N.I., 1981, Theory of Linear Operators in Hilbert Space
[2]   Time-varying Hurst exponent for US stock markets [J].
Alvarez-Ramirez, Jose ;
Alvarez, Jesus ;
Rodriguez, Eduardo ;
Fernandez-Anaya, Guillermo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) :6159-6169
[3]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd
[4]   Testing for time-varying long-range dependence in volatility for emerging markets [J].
Cajueiro, DO ;
Tabak, BM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (3-4) :577-588
[5]  
Chobanyan S.A., 1987, Mathematics and its Applications, V14
[6]   The conditional central limit theorem in Hilbert spaces [J].
Dedecker, J ;
Merlevède, F .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (02) :229-262
[7]  
DEDECKER J, ARXIV09031951V1
[8]  
Dolado J., 2004, ECONOMET J, V7, P168
[9]  
Doukhan P., 2003, Theory and applications of long-range dependence
[10]  
Duncan T.E., 2002, Stoch. Dyn., V2, P225, DOI [DOI 10.1142/S0219493702000340, 10.1142/S0219493702000340]