Parameter identification of a compliant nonlinear SDOF system in random ocean waves by reverse MISO method

被引:1
作者
Selvam, RP [1 ]
Bhattacharyya, SK [1 ]
机构
[1] Indian Inst Technol, Ctr Ocean Engn, Madras 600036, Tamil Nadu, India
关键词
inertia coefficient; Morison's equation; nonlinear; reverse MISO; simulation; system identification; wave spectrum;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The determination of the drag and inertia coefficients, which enter into the wave force model given by Morison's equation, is particularly uncertain and difficult when a linear spectral model is used for ocean waves, and the structure is compliant and has nonlinear dynamic response. In this paper, a nonlinear System Identification method, called Reverse Multiple Inputs-Single Output (R-MISO) is applied to identify the hydrodynamic coefficients as well as the nonlinear stiffness parameter for a compliant single-degree-of-freedom system. Four different types of problems have been identified for use in various situations and the R-MISO has been applied to all of them. One of the problems requires iterative solution strategy to identify the parameters. The method has been found to be efficient in predicting the parameters with reasonable accuracy and has the potential for use in the laboratory experiments on compliant nonlinear offshore systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1199 / 1223
页数:25
相关论文
共 50 条
  • [31] AN ADAPTIVE IDENTIFICATION METHOD BASED ON THE MODULATING FUNCTIONS TECHNIQUE AND EXACT STATE OBSERVERS FOR MODELING AND SIMULATION OF A NONLINEAR MISO GLASS MELTING PROCESS
    Byrski, Witold
    Drapala, Michal
    Byrski, Jedrzej
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2019, 29 (04) : 739 - 757
  • [32] Modeling and parameter identification for a nonlinear multi-stage system for dha regulon in batch culture
    Yin, Hongchao
    Yuan, Jinlong
    Zhang, Xu
    Xie, Jun
    Feng, Enmin
    Xiu, Zhilong
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (01) : 468 - 484
  • [33] Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
    Mohammed, M. A.
    Ibrahim, A. I. N.
    Siri, Z.
    Noor, N. F. M.
    SOCIOLOGICAL METHODS & RESEARCH, 2019, 48 (01) : 34 - 61
  • [34] New Parameter-Identification Method Based on QR Decomposition for Nonlinear Time-Varying Systems
    Chen, Tengfei
    He, Huan
    He, Cheng
    Chen, Guoping
    JOURNAL OF ENGINEERING MECHANICS, 2019, 145 (01)
  • [35] A General Nonlinear System Identification Method Based upon Time-Varying Trend of Instantaneous Frequencies and Amplitudes
    Yan, Guirong
    De Stefano, Alessandro
    Ou, Ge
    ADVANCES IN STRUCTURAL ENGINEERING, 2012, 15 (05) : 781 - 792
  • [36] Kernel Nonlinear Dynamic System Identification Based on Expectation-Maximization Method
    Zhu, Pingping
    Principe, Jose C.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] Restoring force surface method and Hilbert transform one for nonlinear system identification
    Yuan T.
    Yang J.
    Chen L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (01): : 73 - 78
  • [38] Brain Emotional Learning Based Adaptive Identification Method for Nonlinear Dynamic System
    Hu Yong
    Zhen Ziyang
    Wang Zhisheng
    Geng Mingzhi
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3582 - +
  • [39] Multiple Model LPV Approach to Identification of Nonlinear Dual-rate System with Random Time Delay
    Chen, Lei
    Huang, Biao
    Ding, Yongsheng
    IFAC PAPERSONLINE, 2015, 48 (28): : 1220 - 1225
  • [40] Power System Inertia Estimation Based on BJ Parameter Identification Method and PEM Iterative Algorithm
    Tan, Huaping
    Liu, Kezhen
    Li, Hejian
    Pu, Wei
    Zhao, Zhenyan
    Wang, Danyu
    2024 IEEE 2ND INTERNATIONAL CONFERENCE ON POWER SCIENCE AND TECHNOLOGY, ICPST 2024, 2024, : 569 - 573