LQR-Based Optimal Tracking Fault Tolerant Control for a Helicopter with Actuator Faults

被引:0
作者
Yan, Kun [1 ]
Wu, Qingxian [1 ]
Chen, Mou [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
来源
PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS) | 2018年
基金
中国国家自然科学基金;
关键词
Helicopter; Fault Tolerant Control; Disturbance Observer; Optimal Control; Linear Quadratic Regulator; UNMANNED HELICOPTER; ATTITUDE-CONTROL; DESIGN; AUGMENTATION; SYSTEM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study develops an optimal tracking fault tolerant control (FTC) scheme for a helicopter with actuator faults, which integrates the FTC, tracking control and optimal control in one unified framework. The unknown continuous function which is composed of actuator faults is handled using the disturbance observer technology. The trajectory tracking problem is transformed into an optimal control problem and the optimal FTC law is presented to ensure the tracking errors convergence based on the linear quadratic regulator (LQR) control technology. Simulation results obtained show that the proposed optimal tracking fault tolerant controller is effective and useful.
引用
收藏
页码:1022 / 1027
页数:6
相关论文
共 24 条
[1]  
Basri M.A., 2014, International Journal of Mechanical and Mechatronics Engineering, V14, P36
[2]   Optimal tracking controller design for a small scale helicopter [J].
Budiyono, Agus ;
Wibowo, Singgih S. .
JOURNAL OF BIONIC ENGINEERING, 2007, 4 (04) :271-280
[3]   Fault Self-repairing Flight Control of a Small Helicopter via Fuzzy Feedforward and Quantum Control Techniques [J].
Chen, Fuyang ;
Jiang, Bin ;
Tao, Gang .
COGNITIVE COMPUTATION, 2012, 4 (04) :543-548
[4]   Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System [J].
Chen, Mou ;
Shi, Peng ;
Lim, Cheng-Chew .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (02) :260-270
[5]   Control and Limitations of Navigating a Tail Rotor/Actuator Failed Unmanned Helicopter [J].
Garcia, Richard D. ;
Brown, Ainsmar .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2011, 61 (1-4) :5-13
[6]  
Ifassiouen H, 2007, IEEE J APPL MATH COM, V4, P31
[7]   A fuzzy gain-scheduler for the attitude control of an unmanned helicopter [J].
Kadmiry, B ;
Driankov, D .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (04) :502-515
[8]   Design of a stability augmentation system for a helicopter using LQR control and ADS-33 handling qualities specifications [J].
Kumar, M. Vijaya ;
Sampath, Prasad ;
Suresh, S. ;
Omkar, S. N. ;
Ganguli, Ranjan .
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2008, 80 (02) :111-123
[9]   Design and flight testing of an H∞ controller for a robotic helicopter [J].
La Civita, M ;
Papaueorgiou, G ;
Messner, WC ;
Kanade, T .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (02) :485-494
[10]   Adaptive nonlinear control system design for helicopter robust command augmentation [J].
Lee, S ;
Ha, C ;
Kim, BS .
AEROSPACE SCIENCE AND TECHNOLOGY, 2005, 9 (03) :241-251