UNICYCLIC GRAPHS WITH BICYCLIC INVERSES

被引:7
作者
Panda, Swarup Kumar [1 ]
机构
[1] Indian Stat Inst Delhi, Theoret Stat & Math Unit, 7 SJS Sansanwal Marg, New Delhi 110016, India
关键词
adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching; BIPARTITE GRAPHS; TREES;
D O I
10.21136/CMJ.2017.0429-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is nonsingular if its adjacency matrix A(G) is nonsingular. The inverse of a nonsingular graph G is a graph whose adjacency matrix is similar to A(G)(-1) via a particular type of similarity. Let H denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in H which possess unicyclic inverses. We present a characterization of unicyclic graphs in H which possess bicyclic inverses.
引用
收藏
页码:1133 / 1143
页数:11
相关论文
共 16 条
[1]   On unimodular graphs [J].
Akbari, S. ;
Kirkland, S. J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) :3-15
[2]  
[Anonymous], 1953, Michigan Mathematical Journal, DOI DOI 10.1307/MMJ/1028989917
[3]   On nonsingular trees and a reciprocal eigenvalue property [J].
Barik, S. ;
Neumann, M. ;
Pati, S. .
LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (06) :453-465
[4]   ON GRAPHS WITH SIGNED INVERSES [J].
BUCKLEY, F ;
DOTY, LL ;
HARARY, F .
NETWORKS, 1988, 18 (03) :151-157
[5]  
Cvetkovic D. M., 1979, PUBL ELEKTROTEH F MF, P111
[6]  
Cvetkovic D. M., 1978, PUBL ELEKTROTEH F MF, P602
[7]  
Frucht R., 1970, Aequationes Math., V4, P322, DOI DOI 10.1007/BF01844162
[8]   INVERSES OF TREES [J].
GODSIL, CD .
COMBINATORICA, 1985, 5 (01) :33-39
[9]  
Harary F., 1976, Math. Mag., V49, P91
[10]   On some graphs which possess inverses [J].
Panda, S. K. ;
Pati, S. .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07) :1445-1459