Time-dependent boundary integral equations for multiply connected plates

被引:4
作者
Chudinovich, I
Constanda, C
机构
[1] Univ Tulsa, Dept Math & Comp Sci, Tulsa, OK 74104 USA
[2] Kharkov Natl Univ, Dept Math & Mech, Kharkov, Ukraine
关键词
boundary integral equations; dynamic problems; elastic plates;
D O I
10.1093/imamat/68.5.507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of distributional solutions is discussed for the initial-boundary value problems associated with the motion of a thin, elastic, multiply connected plate, and for the boundary equations arising from integral representations of such solutions.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条
[11]   The direct method in time-dependent bending of thermoelastic plates [J].
Chudinovich, I. ;
Constanda, C. ;
Aguilera Cortes, L. A. .
APPLICABLE ANALYSIS, 2007, 86 (03) :315-329
[12]   Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits [J].
Sangawi, Ali W. K. ;
Murid, Ali H. M. ;
Nasser, M. M. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :2055-2068
[13]   Fundamental solutions and boundary integral equations of moderately thick symmetrically laminated anisotropic plates [J].
Wang, JG ;
Schweizerhof, K .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1996, 12 (07) :383-394
[14]   Frank Rizzo and boundary integral equations [J].
Fairweather, G. ;
Martin, P. A. ;
Rudolphi, T. J. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 124 :137-141
[15]   Integral representations for solutions of some BVPs for the Lam, system in multiply connected domains [J].
Cialdea, Alberto ;
Leonessa, Vita ;
Malaspina, Angelica .
BOUNDARY VALUE PROBLEMS, 2011, :1-25
[16]   Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains [J].
Alberto Cialdea ;
Vita Leonessa ;
Angelica Malaspina .
Boundary Value Problems, 2011
[17]   Integral equations of the first kind in the theory of oscillating plates [J].
Thomson, G. R. ;
Constanda, C. .
APPLICABLE ANALYSIS, 2012, 91 (12) :2235-2244
[18]   The treatment of lubrication forces in boundary integral equations [J].
Mammoli, MA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2067) :855-881
[19]   An extrapolation method for a class of boundary integral equations [J].
Xu, YS ;
Zhao, YH .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :587-610
[20]   On boundary integral equations for cracked and for thin bodies [J].
Mukherjee, S .
MATHEMATICS AND MECHANICS OF SOLIDS, 2001, 6 (01) :47-64