Large global solutions for nonlinear Schrodinger equations I, mass-subcritical cases

被引:5
作者
Beceanu, Marius [1 ]
Deng, Qingquan [2 ]
Soffer, Avy [3 ]
Wu, Yifei [4 ]
机构
[1] SUNY Albany, Dept Math & Stat, Earth Sci 110, Albany, NY 12222 USA
[2] Cent China Normal Univ, Dept Math, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[4] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Nonlinear Schrodinger equation; Global well-posedness; Critical regularity; SUPERCRITICAL WAVE-EQUATIONS; DATA CAUCHY-THEORY; DEFOCUSING QUINTIC NLS; SURE WELL-POSEDNESS; INVARIANT-MEASURES; RADIAL SOLUTIONS; CRITICAL H; SCATTERING; SPACE; DIMENSIONS;
D O I
10.1016/j.aim.2021.107973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the nonlinear Schrodinger equation, i partial derivative(t)u + Delta u = mu vertical bar u vertical bar(p)u, (t, x) is an element of Rd+1, with mu= +/- 1, p > 0. In this work, we consider the mass-subcritical cases, that is, p is an element of (0, 4/d). We prove that under some restrictions on d, p, any radial initial data in the critical space H-sc (R-d) with compact support, implies global well-posedness. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 67 条
[1]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[2]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[3]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[4]  
Bourgain J, 2014, DIFFER INTEGRAL EQU, V27, P1037
[5]  
Bulut A., ARXIV11120629
[6]   Random data Cauchy theory for supercritical wave equations II: a global existence result [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :477-496
[7]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[8]   Probabilistic well-posedness for the cubic wave equation [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (01) :1-30
[9]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[10]  
Cazenave T., 2003, Courant Lecture Notes, Amer. Math. Soc, V10, P346