One-Shot Texture Retrieval Using Global Grouping Metric

被引:4
作者
Zhu, Kai [1 ]
Cao, Yang [1 ]
Zhai, Wei [1 ]
Zha, Zheng-Jun [1 ]
机构
[1] Univ Sci & Technol China, Dept Informat Sci & Technol, Hefei 230000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Image segmentation; Task analysis; Measurement; Adaptation models; Feature extraction; Semantics; Computer vision; Attention; computer vision; one-shot learning; segmentation; texture;
D O I
10.1109/TMM.2020.3031062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Texture retrieval is widely used in the fields of fashion and e-commerce. This paper presents the problem of one-shot texture retrieval: given an example of a new reference texture, we aim to detect and segment all pixels of the same texture category within an arbitrary image. To address this problem, an OS-TR network is proposed to encode both reference and query images into a texture representation space, and a better comparison is made based on the global grouping information. Because the learned texture representation should be invariant to the spatial layout while preserving the rough semantic concepts, we introduce an adaptive directionality-aware module to finely discriminate the orderless texture details. To make full use of the global context information given only a few examples, we incorporate a grouping-attention mechanism into the relation network, resulting in the per-channel modulation of the local relation features. Extensive experiments on two benchmark datasets (i.e., the DTD and ADE20K dataset) and real scenarios demonstrate that our proposed method can achieve above-par segmentation performance and robust generalization across domains.
引用
收藏
页码:3726 / 3737
页数:12
相关论文
共 43 条
[1]   OPENSURFACES: A Richly Annotated Catalog of Surface Appearance [J].
Bell, Sean ;
Upchurch, Paul ;
Snavely, Noah ;
Bala, Kavita .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04)
[2]  
Bertinetto L, 2018, INT C LEARNING REPRE
[3]  
Chanda O., 2019, IEEE INT WORKSH MULT
[4]   VideoPuzzle: Descriptive One-Shot Video Composition [J].
Chen, Qiang ;
Wang, Meng ;
Huang, Zhongyang ;
Hua, Yang ;
Song, Zheng ;
Yan, Shuicheng .
IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (03) :521-534
[5]   Content-Based Image Retrieval Using Multiresolution Color and Texture Features [J].
Chun, Young Deok ;
Kim, Nam Chul ;
Jang, Ick Hoon .
IEEE TRANSACTIONS ON MULTIMEDIA, 2008, 10 (06) :1073-1084
[6]  
Cimpoi M, 2015, PROC CVPR IEEE, P3828, DOI 10.1109/CVPR.2015.7299007
[7]   Describing Textures in the Wild [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Mohamed, Sammy ;
Vedaldi, Andrea .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3606-3613
[8]   Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models [J].
Do, MN ;
Vetterli, M .
IEEE TRANSACTIONS ON MULTIMEDIA, 2002, 4 (04) :517-527
[9]  
Dong N., 2018, BMVC, P79
[10]  
Fanet Z., 2020, P COMP VIS PATT REC