Infrared Image Enhancement in Maritime Environment with Convolutional Neural Networks

被引:10
作者
Bhattacharya, Purbaditya [1 ]
Riechen, Joerg [2 ]
Zoelzer, Udo [1 ]
机构
[1] Helmut Schmidt Univ, Dept Signal Proc & Commun, Hamburg, Germany
[2] WTD 71 Mil Serv Ctr Ships Naval Weap Maritime Tec, Eckernforde, Germany
来源
VISAPP: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 4: VISAPP | 2018年
关键词
Image Processing; Convolutional Neural Network; Denoising; Super-resolution;
D O I
10.5220/0006618700370046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image enhancement approach with Convolutional Neural Network (CNN) for infrared (IR) images from maritime environment, is proposed in this paper. The approach includes different CNNs to improve the resolution and to reduce noise artefacts in maritime IR images. The denoising CNN employs a residual architecture which is trained to reduce graininess and fixed pattern noise. The super-resolution CNN employs a similar architecture to learn the mapping from a low-resolution to multi-scale high-resolution images. The performance of the CNNs is evaluated on the IR test dataset with standard evaluation methods and the evaluation results show an overall improvement in the quality of the IR images.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 2008, ADV NEURAL INF PROCE
[2]  
[Anonymous], 2006, IEEE COMP SOC C COMP
[3]  
Brown M, 2011, PROC CVPR IEEE, P177, DOI 10.1109/CVPR.2011.5995637
[4]  
Burger HC, 2012, PROC CVPR IEEE, P2392, DOI 10.1109/CVPR.2012.6247952
[5]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[6]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[7]  
Glorot X., 2010, P 13 INT C ART INT S, P249
[8]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]