Multiwavelength cluster mass estimates and machine learning

被引:15
作者
Cohn, J. D. [1 ,2 ]
Battaglia, Nicholas [3 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[3] Cornell Univ, Ithaca, NY 14853 USA
关键词
galaxies:; clusters:; general; COSMOLOGICAL SIMULATIONS; GALAXY CLUSTERS; EVOLUTION; SCATTER; MODEL;
D O I
10.1093/mnras/stz3087
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One emerging application of machine learning methods is the inference of galaxy cluster masses. In this note, machine learning is used to directly combine five simulated multiwavelength measurements in order to find cluster masses. This is in contrast to finding mass estimates for each observable, normally by using a scaling relation, and then combining these scaling law based mass estimates using a likelihood. We also illustrate how the contributions of each observable to the accuracy of the resulting mass measurement can be compared via model-agnostic Importance Permutation values. Thirdly, as machine learning relies upon the accuracy of the training set in capturing observables, their correlations, and the observational selection function, and as the machine learning training set originates from simulations, two tests of whether a simulation's correlations are consistent with observations are suggested and explored as well.
引用
收藏
页码:1575 / 1584
页数:10
相关论文
共 49 条
[1]   Planck 2015 results XVII. Constraints on primordial non-Gaussianity [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arrojam, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]   Splashback in accreting dark matter halos [J].
Adhikari, Susmita ;
Dalal, Neal ;
Chamberlain, Robert T. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (11)
[3]   Painting galaxies into dark matter haloes using machine learning [J].
Agarwal, Shankar ;
Dave, Romeel ;
Bassett, Bruce A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) :3410-3422
[4]   Cosmological Parameters from Observations of Galaxy Clusters [J].
Allen, Steven W. ;
Evrard, August E. ;
Mantz, Adam B. .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 49, 2011, 49 :409-470
[5]   Scaling relations for galaxy clusters in the Millennium-XXL simulation [J].
Angulo, R. E. ;
Springel, V. ;
White, S. D. M. ;
Jenkins, A. ;
Baugh, C. M. ;
Frenk, C. S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 426 (03) :2046-2062
[6]   An application of machine learning techniques to galaxy cluster mass estimation using the MACSIS simulations [J].
Armitage, Thomas J. ;
Kay, Scott T. ;
Barnes, David J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) :1526-1537
[7]   Cosmological Simulations of Galaxy Clusters [J].
Borgani, Stefano ;
Kravtsov, Andrey .
ADVANCED SCIENCE LETTERS, 2011, 4 (02) :204-227
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   SUNYAEV-ZELDOVICH FLUCTUATIONS IN THE COLD DARK MATTER SCENARIO [J].
COLE, S ;
KAISER, N .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1988, 233 (03) :637-648
[10]   THE EVOLUTION OF LARGE-SCALE STRUCTURE IN A UNIVERSE DOMINATED BY COLD DARK MATTER [J].
DAVIS, M ;
EFSTATHIOU, G ;
FRENK, CS ;
WHITE, SDM .
ASTROPHYSICAL JOURNAL, 1985, 292 (02) :371-394