Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

被引:79
作者
Barker, T. [1 ,2 ]
Schaeffer, D. G. [3 ]
Shearer, M. [4 ]
Gray, J. M. N. T. [1 ,2 ]
机构
[1] Univ Manchester, Sch Math, Oxford Rd, Oxford M13 9PL, England
[2] Univ Manchester, Manchester Ctr Nonlinear Dynam, Oxford Rd, Oxford M13 9PL, England
[3] Duke Univ, Math Dept, Box 90320, Durham, NC 27708 USA
[4] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2201期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
granular flow; continuum modelling; rheology; FREE-SURFACE FLOWS; ANTIGRANULOCYTES FLOW; CONSTITUTIVE MODEL; ILL-POSEDNESS; RHEOLOGY; STABILITY; EVOLUTION; BEHAVIOR; MEDIA;
D O I
10.1098/rspa.2016.0846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent mu(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient mu(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that mu(I) satisfies certain minimal, physically natural, inequalities.
引用
收藏
页数:26
相关论文
共 36 条
  • [1] On the rheology of dilative granular media: Bridging solid- and fluid-like behavior
    Andrade, Jose E.
    Chen, Qiushi
    Le, Phong H.
    Avila, Carlos F.
    Evans, T. Matthew
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) : 1122 - 1136
  • [2] Segregation-induced finger formation in granular free-surface flows
    Baker, J. L.
    Johnson, C. G.
    Gray, J. M. N. T.
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 809 : 168 - 212
  • [3] Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow
    Barker, T.
    Schaeffer, D. G.
    Bohorquez, P.
    Gray, J. M. N. T.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 779 : 794 - 818
  • [4] Nonlocal Rheology of Granular Flows across Yield Conditions
    Bouzid, Mehdi
    Trulsson, Martin
    Claudin, Philippe
    Clement, Eric
    Andreotti, Bruno
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [5] Unifying Suspension and Granular Rheology
    Boyer, Francois
    Guazzelli, Elisabeth
    Pouliquen, Olivier
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (18)
  • [6] Rheophysics of dense granular materials: Discrete simulation of plane shear flows
    da Cruz, F
    Emam, S
    Prochnow, M
    Roux, JN
    Chevoir, F
    [J]. PHYSICAL REVIEW E, 2005, 72 (02)
  • [7] de Coulomb CA., 1773, MEMOIRES MATH PHYSIQ, V7, P343
  • [8] Flows of dense granular media
    Forterre, Yoel
    Pouliquen, Olivier
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 (1-24) : 1 - 24
  • [9] A depth-averaged μ(I)-rheology for shallow granular free-surface flows
    Gray, J. M. N. T.
    Edwards, A. N.
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 755 : 503 - 534
  • [10] Gray JMNT, 1999, J PHYS OCEANOGR, V29, P2920, DOI 10.1175/1520-0485(1999)029<2920:LOHAIP>2.0.CO