Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

被引:83
作者
Barker, T. [1 ,2 ]
Schaeffer, D. G. [3 ]
Shearer, M. [4 ]
Gray, J. M. N. T. [1 ,2 ]
机构
[1] Univ Manchester, Sch Math, Oxford Rd, Oxford M13 9PL, England
[2] Univ Manchester, Manchester Ctr Nonlinear Dynam, Oxford Rd, Oxford M13 9PL, England
[3] Duke Univ, Math Dept, Box 90320, Durham, NC 27708 USA
[4] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2201期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
granular flow; continuum modelling; rheology; FREE-SURFACE FLOWS; ANTIGRANULOCYTES FLOW; CONSTITUTIVE MODEL; ILL-POSEDNESS; RHEOLOGY; STABILITY; EVOLUTION; BEHAVIOR; MEDIA;
D O I
10.1098/rspa.2016.0846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent mu(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient mu(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that mu(I) satisfies certain minimal, physically natural, inequalities.
引用
收藏
页数:26
相关论文
共 36 条
[1]   On the rheology of dilative granular media: Bridging solid- and fluid-like behavior [J].
Andrade, Jose E. ;
Chen, Qiushi ;
Le, Phong H. ;
Avila, Carlos F. ;
Evans, T. Matthew .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) :1122-1136
[2]   Segregation-induced finger formation in granular free-surface flows [J].
Baker, J. L. ;
Johnson, C. G. ;
Gray, J. M. N. T. .
JOURNAL OF FLUID MECHANICS, 2016, 809 :168-212
[3]   Well-posed and ill-posed behaviour of the μ(I)-rheology for granular flow [J].
Barker, T. ;
Schaeffer, D. G. ;
Bohorquez, P. ;
Gray, J. M. N. T. .
JOURNAL OF FLUID MECHANICS, 2015, 779 :794-818
[4]   Nonlocal Rheology of Granular Flows across Yield Conditions [J].
Bouzid, Mehdi ;
Trulsson, Martin ;
Claudin, Philippe ;
Clement, Eric ;
Andreotti, Bruno .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[5]   Unifying Suspension and Granular Rheology [J].
Boyer, Francois ;
Guazzelli, Elisabeth ;
Pouliquen, Olivier .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)
[6]   Rheophysics of dense granular materials: Discrete simulation of plane shear flows [J].
da Cruz, F ;
Emam, S ;
Prochnow, M ;
Roux, JN ;
Chevoir, F .
PHYSICAL REVIEW E, 2005, 72 (02)
[7]  
de Coulomb CA., 1773, MEMOIRES MATH PHYSIQ, V7, P343
[8]   Flows of dense granular media [J].
Forterre, Yoel ;
Pouliquen, Olivier .
ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 (1-24) :1-24
[9]   A depth-averaged μ(I)-rheology for shallow granular free-surface flows [J].
Gray, J. M. N. T. ;
Edwards, A. N. .
JOURNAL OF FLUID MECHANICS, 2014, 755 :503-534
[10]  
Gray JMNT, 1999, J PHYS OCEANOGR, V29, P2920, DOI 10.1175/1520-0485(1999)029<2920:LOHAIP>2.0.CO