An enhanced random forest with canonical partial least squares for classification

被引:5
作者
Li, Chuan-Quan [1 ]
Lin, You-Wu [2 ]
Xu, Qing-Song [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Guangxi Teachers Educ Univ, Sch Math & Stat, Nanning, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Canonical partial least squares; random forest; classification; feature rotation; CLASSIFIERS; REGRESSION; ENSEMBLE;
D O I
10.1080/03610926.2020.1716249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, several variants of random forest have been derived for the classification problems, among which the rotation forest is an important type to improve the model's accuracy. In this article, we proposed a simple and effective variation of rotation forest, which the canonical partial least squares algorithm is employed to rotate the variable space of tree and then all the trees are combined being a "forest." Results of an experiment on a sample of 20 benchmark datasets show our method has better prediction performance comparing with random forest and rotation forest.
引用
收藏
页码:4324 / 4334
页数:11
相关论文
共 50 条
  • [31] Partial least squares classification for high dimensional data using the PCOUT algorithm
    Asuman Turkmen
    Nedret Billor
    Computational Statistics, 2013, 28 : 771 - 788
  • [32] Bayesian Sparse Partial Least Squares
    Vidaurre, Diego
    van Gerven, Marcel A. J.
    Bielza, Concha
    Larranaga, Pedro
    Heskes, Tom
    NEURAL COMPUTATION, 2013, 25 (12) : 3318 - 3339
  • [33] Global Sparse Partial Least Squares
    Mou, Yi
    You, Xinge
    Jiang, Xiubao
    Xu, Duanquan
    Yu, Shujian
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 349 - 352
  • [34] Partial Least Squares for Heterogeneous Data
    Buhlmann, Peter
    MULTIPLE FACETS OF PARTIAL LEAST SQUARES AND RELATED METHODS, 2016, 173 : 3 - 15
  • [35] Constrained kernelized partial least squares
    Sharif, Siamak Salari
    Reilly, James P.
    MacGregor, John F.
    JOURNAL OF CHEMOMETRICS, 2014, 28 (10) : 762 - 772
  • [36] Partial least squares for dependent data
    Singer, Marco
    Krivobokova, Tatyana
    Munk, Axel
    De Groot, Bert
    BIOMETRIKA, 2016, 103 (02) : 351 - 362
  • [37] Rapid determination of water COD using laser-induced breakdown spectroscopy coupled with partial least-squares and random forest
    Ye, Song
    Chen, Xiao
    Dong, Daming
    Wang, Jiejun
    Wang, Xinqiang
    Wang, Fangyuan
    ANALYTICAL METHODS, 2018, 10 (40) : 4879 - 4885
  • [38] IMPLEMENTING PARTIAL LEAST-SQUARES
    DENHAM, MC
    STATISTICS AND COMPUTING, 1995, 5 (03) : 191 - 202
  • [39] EARLY ALZHEIMER'S DISEASE DIAGNOSIS USING PARTIAL LEAST SQUARES AND RANDOM FORESTS
    Ramirez, J.
    Gorriz, J. M.
    Segovia, F.
    Chaves, R.
    Salas-Gonzalez, D.
    Lopez, M.
    Alvarez, I.
    Padilla, P.
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 81 - 84
  • [40] Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: Use of the random partial least squares approach
    Mazandu, Gaston K.
    Opap, Kenneth
    Mulder, Nicola J.
    INFECTION GENETICS AND EVOLUTION, 2011, 11 (01) : 181 - 189