Indefinite theta series and generalized error functions

被引:24
作者
Alexandrov, Sergei [1 ]
Banerjee, Sibasish [2 ]
Manschot, Jan [3 ]
Pioline, Boris [4 ,5 ,6 ]
机构
[1] Univ Montpellier, CNRS, UMR 5221, L2C, F-34095 Montpellier, France
[2] CEA Saclay, IPhT, F-91191 Gif Sur Yvette, France
[3] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland
[4] CERN, TH Dept, Case C01600, CH-1211 Geneva 23, Switzerland
[5] Sorbonne Univ, LPTHE, UMR 7589, Campus Pierre & Marie Curie, F-75005 Paris, France
[6] CNRS, LPTHE, UMR 7589, 4 Pl Jussieu, F-75005 Paris, France
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 05期
关键词
MODULAR-FORMS; SHEAVES; NUMBERS; IDENTITIES; RANK-2; P-2;
D O I
10.1007/s00029-018-0444-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Theta series for lattices with indefinite signature (n(+), n(-)) arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their modular properties are well understood in the Lorentzian case (n(+) = 1), but have remained obscure when n(+) = 2. Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of ` conformal' holomorphic theta series (n(+) = 2). As an application, we determine the modular properties of a generalized Appell-Lerch sum attached to the lattice A(2), which arose in the study of rank 3 vector bundles on P-2. The extension of our method to n(+) > 2 is outlined.
引用
收藏
页码:3927 / 3972
页数:46
相关论文
共 46 条
  • [41] Westerholt-Raum M, 2015, RES MATH SCI, V2, DOI 10.1186/s40687-015-0032-y
  • [42] YOSHIOKA K, 1994, J REINE ANGEW MATH, V453, P193
  • [43] ZAGIER D, 1975, CR ACAD SCI A MATH, V281, P883
  • [44] Zagier D, 2009, RAMANUJANS MOCK THET, V2007/2008
  • [45] Zwegers S., 2002, Utrecht PhD thesis
  • [46] On two fifth order mock theta functions
    Zwegers, Sander
    [J]. RAMANUJAN JOURNAL, 2009, 20 (02) : 207 - 214