An efficient numerical method based on redefined cubic B-spline basis functions for pricing Asian options

被引:4
作者
Roul, Pradip [1 ]
Goura, V. M. K. Prasad [1 ,2 ]
机构
[1] VNIT, Dept Math, Nagpur 440010, Maharashtra, India
[2] Amrita Vishwa Vidyapeetham, Dept Math, Amrita Sch Engn, Coimbatore 641112, Tamil Nadu, India
关键词
Asian options; Redefined cubic B-spline; Stability; Convergence; Delta value; FINITE-DIFFERENCE SCHEME; COLLOCATION METHOD; MESH;
D O I
10.1016/j.cam.2021.113774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a collocation method based on redefined cubic B-spline basis functions for solving Asian option pricing problem. The stability and convergence analysis of the present method are studied. The method is proved to be unconditionally stable and has second-order convergence with respect to space variable. Numerical experiment is performed to validate the theoretical results and demonstrate the applicability of the method. The option and delta values for various values of volatilities and interest rates are computed. Convergence of the delta values is analyzed. The obtained results are compared with the existing ones to show the advantage of our method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 28 条
[1]   A hybrid finite difference scheme for pricing Asian options [J].
Cen, Zhongdi ;
Xu, Aimin ;
Le, Anbo .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 :229-239
[2]   Finite difference scheme with a moving mesh for pricing Asian options [J].
Cen, Zhongdi ;
Le, Anbo ;
Xu, Aimin .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) :8667-8675
[3]  
de Boor C., 1968, J. Approx. Theory, V1, P452, DOI DOI 10.1016/0021-9045(68)90033-6
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI
[5]  
Dubois F., 2004, J COMPUT FINANC, V8, P55
[6]  
Geman H., 1993, MATH FINANC, V3, P349, DOI [DOI 10.1111/J.1467-9965.1993.TB00092.X, 10.1111/j.1467-9965.1993.tb00092.x, DOI 10.1111/j.1467-9965.1993.tb00092.x]
[7]  
Hall C.A., 1968, J. Approx. Theory, V1, P209, DOI [DOI 10.1016/0021-9045(68)90025-7, 10.1016/0021-9045(68)90025-7]
[8]  
Henrici P., 1962, Discrete Variable Methods in Ordinary Differential Equations
[9]  
Hugger J., 2003, ANZIAM J, V45, P215
[10]  
Ingersoll J.E., 1987, Theory of Financial Decision Making, V3