SPARSE REPRESENTATION-BASED ARCHETYPAL GRAPHS FOR SPECTRAL CLUSTERING

被引:0
作者
Roscher, Ribana [1 ]
Drees, Lukas [1 ]
Wenzel, Susanne [1 ]
机构
[1] Univ Bonn, Inst Geodesy & Geoinformat, Bonn, Germany
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Sparse representation; spectral clustering; sparse graphs; anomaly detection; change detection;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose sparse representation-based archetypal graphs as input to spectral clustering for anomaly and change detection. The graph consists of vertices defined by data samples and edges which weights are determines by sparse representation. Besides relationships between all data samples, the graph also encodes the relationship to extremal points, socalled archetypes, which leads to an easily interpretable clustering result. We compare our approach to k-means clustering performed on the original feature representation and to kmeans clustering performed on the sparse representation activations. Experiments show that our approach is able to deliver accurate and interpretable results for anomaly and change detection.
引用
收藏
页码:2203 / 2206
页数:4
相关论文
共 13 条
[1]   Sparse Coding with Anomaly Detection [J].
Adler, Amir ;
Elad, Michael ;
Hel-Or, Yacov ;
Rivlin, Ehud .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2015, 79 (02) :179-188
[2]  
Choromanska A, 2013, LECT NOTES ARTIF INT, V8139, P367
[3]   Unsupervised Feature Learning Via Spectral Clustering of Multidimensional Patches for Remotely Sensed Scene Classification [J].
Hu, Fan ;
Xia, Gui-Song ;
Wang, Zifeng ;
Huang, Xin ;
Zhang, Liangpei ;
Sun, Hong .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (05) :2015-2030
[4]  
Ng AY, 2002, ADV NEUR IN, V14, P849
[5]   Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis [J].
Roemer, Christoph ;
Wahabzada, Mirwaes ;
Ballvora, Agim ;
Pinto, Francisco ;
Rossini, Micol ;
Panigada, Cinzia ;
Behmann, Jan ;
Leon, Jens ;
Thurau, Christian ;
Bauckhage, Christian ;
Kersting, Kristian ;
Rascher, Uwe ;
Pluemer, Lutz .
FUNCTIONAL PLANT BIOLOGY, 2012, 39 (10-11) :878-890
[6]  
Roscher R., 2016, P PRRS WORKSH ICPR
[7]   DETECTION OF DISEASE SYMPTOMS ON HYPERSPECTRAL 3D PLANT MODELS [J].
Roscher, Ribana ;
Behmann, Jan ;
Mahlein, Anne-Katrin ;
Dupuis, Jan ;
Kuhlmann, Heiner ;
Pluemer, Lutz .
XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07) :89-96
[8]  
Roscher R, 2015, INT GEOSCI REMOTE SE, P2358, DOI 10.1109/IGARSS.2015.7326282
[9]  
Thurau C., 2010, CIKM, P1785, DOI DOI 10.1145/1871437.1871729
[10]   Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis [J].
Volpi, Michele ;
Camps-Valls, Gustau ;
Tuia, Devis .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 107 :50-63