A Framework for Automatic Population of Ontology-Based Digital Libraries

被引:2
|
作者
Pandolfo, Laura [1 ]
Pulina, Luca [2 ]
Adorni, Giovanni [1 ]
机构
[1] Univ Genoa, DIBRIS, Via Opera Pia 13, I-16145 Genoa, Italy
[2] Univ Sassari, Polcoming, Viale Mancini 5, I-07100 Sassari, Italy
来源
AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2016年 / 10037卷
关键词
Ontology population; Ontology-based digital library; Information Extraction; DOMAIN;
D O I
10.1007/978-3-319-49130-1_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maintaining updated ontology-based digital libraries faces two main issues. First, documents are often unstructured and in heterogeneous data formats, making it even more difficult to extract information and search in. Second, manual ontology population is time consuming and therefore automatic methods to support this process are needed. In this paper, we present an ontology-based framework aiming at populating ontologies. In particular, we propose an approach for triplet extraction from heterogeneous and unstructured documents in order to automatically populate ontology-based digital libraries. Finally, we evaluate the proposed framework on a real world case study.
引用
收藏
页码:406 / 417
页数:12
相关论文
共 50 条
  • [1] Toward an ontology-based framework for clinical research databases
    Kong, Y. Megan
    Dahlke, Carl
    Xiang, Qun
    Qian, Yu
    Karp, David
    Scheuermann, Richard H.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2011, 44 (01) : 48 - 58
  • [2] An adaptable framework for ontology-based content creation on the semantic web
    Valkeapaeae, Onni
    Alm, Olli
    Hyvoenen, Ero
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (12) : 1835 - 1853
  • [3] An ontology-based approach for the reconstruction and analysis of digital incidents timelines
    Chabot, Yoan
    Bertaux, Aurelie
    Nicolle, Christophe
    Kechadi, Tahar
    DIGITAL INVESTIGATION, 2015, 15 : 83 - 100
  • [4] Text Mining Analysis of Wind Turbine Accidents: An Ontology-Based Framework
    Ertek, Gurdal
    Chi, Xu
    Zhang, Allan N.
    Asian, Sobhan
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3233 - 3241
  • [5] Ontology-Based Information Extraction for Subject-Focussed Automatic Essay Evaluation
    Ajetunmobi, Stephanie Abimbola
    Daramola, Olawande
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTING NETWORKING AND INFORMATICS (ICCNI 2017), 2017,
  • [6] An automatic approach for ontology-based feature extraction from heterogeneous textual resources
    Vicient, Carlos
    Sanchez, David
    Moreno, Antonio
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (03) : 1092 - 1106
  • [7] Ontology-based information retrieval and extraction
    Lee, CY
    Soo, VW
    ITRE 2005: 3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: RESEARCH AND EDUCATION, PROCEEDINGS, 2005, : 265 - 269
  • [8] An Information Extraction Process for Semi-automatic Ontology Population
    Faria, Carla
    Girardi, Rosario
    SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 6TH INTERNATIONAL CONFERENCE SOCO 2011, 2011, 87 : 319 - 328
  • [9] Using Domain Specific Generated Rules for Automatic Ontology Population
    Faria, Carla
    Girardi, Rosario
    Novais, Paulo
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 297 - 302
  • [10] OntoPeFeGe: Ontology-Based Personalized Feedback Generator
    Demaidi, Mona Nabil
    Gaber, Mohamed Medhat
    Filer, Nick
    IEEE ACCESS, 2018, 6 : 31644 - 31664