Implicit finite-difference simulations of seismic wave propagation

被引:7
|
作者
Chu, Chunlei [1 ]
Stoffa, Paul L. [2 ]
机构
[1] Conoco Phillips, Houston, TX USA
[2] Univ Texas Austin, Inst Geophys, Austin, TX USA
关键词
SCHEMES; ORDER;
D O I
10.1190/GEO2011-0180.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples.
引用
收藏
页码:T57 / T67
页数:11
相关论文
共 50 条
  • [21] Efficient solution of Noye-Hayman implicit finite-difference method for modelling wave propagation in tunnels
    Rasool, H. F.
    Qureshi, M. A.
    Aziz, A.
    Malik, F. H.
    ELECTRONICS LETTERS, 2020, 56 (22) : 1167 - +
  • [22] Stable optimization of finite-difference operators for seismic wave modeling
    Wang, Jian
    Hong, Liu
    STUDIA GEOPHYSICA ET GEODAETICA, 2020, 64 (04) : 452 - 464
  • [23] Optimized finite-difference operator for broadband seismic wave modeling
    Zhang, Jin-Hai
    Yao, Zhen-Xing
    GEOPHYSICS, 2013, 78 (01) : A13 - A18
  • [24] Optimizing Finite-Difference Operator in Seismic Wave Numerical Modeling
    Li, Hui
    Fang, Yuan
    Huang, Zhiguo
    Zhang, Mengyao
    Wei, Qing
    ALGORITHMS, 2022, 15 (04)
  • [25] Stable optimization of finite-difference operators for seismic wave modeling
    Jian Wang
    Liu Hong
    Studia Geophysica et Geodaetica, 2020, 64 : 452 - 464
  • [26] Travel time calculation of seismic wave with finite-difference method
    Wang, Huazhong
    Xie, Haibing
    Ma, Zaitian
    Tongji Daxue Xuebao/Journal of Tongji University, 1997, 25 (03): : 318 - 321
  • [27] Optimized implicit finite-difference and Fourier finite-difference migration for VTI media
    Shan, Guojian
    GEOPHYSICS, 2009, 74 (06) : WCA189 - WCA197
  • [28] A finite-difference method for stress modelling based on wave propagation
    Fan, Zhuo
    Cheng, Fei
    Liu, Jiangping
    Han, Bingkai
    Zheng, Yunpeng
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 233 (03) : 2279 - 2294
  • [29] ANISOTROPIC WAVE-PROPAGATION THROUGH FINITE-DIFFERENCE GRIDS
    IGEL, H
    MORA, P
    RIOLLET, B
    GEOPHYSICS, 1995, 60 (04) : 1203 - 1216
  • [30] Finite-difference scheme for elastic wave propagation in a circular disk
    Cherukuri, HP
    Shawki, TG
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (04): : 2139 - 2155