Implicit finite-difference simulations of seismic wave propagation

被引:7
|
作者
Chu, Chunlei [1 ]
Stoffa, Paul L. [2 ]
机构
[1] Conoco Phillips, Houston, TX USA
[2] Univ Texas Austin, Inst Geophys, Austin, TX USA
关键词
SCHEMES; ORDER;
D O I
10.1190/GEO2011-0180.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples.
引用
收藏
页码:T57 / T67
页数:11
相关论文
共 50 条
  • [1] IMPLICIT SYSTEMS FOR FINITE-DIFFERENCE SEISMIC MODELING
    MUFTI, IR
    GEOPHYSICS, 1985, 50 (07) : 1192 - 1192
  • [2] SEISMIC-WAVE PROPAGATION IN A BOREHOLE USING THE FINITE-DIFFERENCE METHOD
    PARDOCASAS, F
    STEPHEN, RA
    CHENG, CH
    GEOPHYSICS, 1985, 50 (02) : 266 - 266
  • [3] Explicit coupling of acoustic and elastic wave propagation in finite-difference simulations
    Gao, Longfei
    Keyes, David
    GEOPHYSICS, 2020, 85 (05) : T293 - T308
  • [4] ANALYSIS OF AN IMPLICIT FINITE-DIFFERENCE SOLUTION TO AN UNDERWATER WAVE-PROPAGATION PROBLEM
    STMARY, DF
    LEE, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 57 (03) : 378 - 390
  • [5] Fourier finite-difference wave propagation
    Song, Xiaolei
    Fomel, Sergey
    GEOPHYSICS, 2011, 76 (05) : T123 - T129
  • [6] The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
    Moczo, P.
    Kristek, J.
    Galis, M.
    Pazak, P.
    Balazovjech, M.
    ACTA PHYSICA SLOVACA, 2007, 57 (02) : 177 - 406
  • [7] An orthorhombic representation of a heterogeneous medium for the finite-difference modelling of seismic wave propagation
    Kristek, Jozef
    Moczo, Peter
    Chaljub, Emmanuel
    Kristekova, Miriam
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 208 (02) : 1250 - 1264
  • [8] The finite-difference time-domain method for modeling of seismic wave propagation
    Moczo, Peter
    Robertsson, Johan O. A.
    Eisner, Leo
    ADVANCES IN GEOPHYSICS, VOL 48: ADVANCES IN WAVE PROPAGATION IN HETEROGENEOUS EARTH, 2007, 48 : 421 - 516
  • [9] High-order temporal and implicit spatial staggered-grid finite-difference operators for modelling seismic wave propagation
    Ren, Zhiming
    Li, Zhenchun
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (02) : 844 - 865
  • [10] A discrete representation of a heterogeneous viscoelastic medium for the finite-difference modelling of seismic wave propagation
    Kristek, Jozef
    Moczo, Peter
    Chaljub, Emmanuel
    Kristekova, Miriam
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (03) : 2021 - 2034