VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS

被引:8
作者
Almeida, Ricardo [1 ]
Malinowska, Agnieszka B. [2 ]
Luisa Morgado, M. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro, Dept Math, Polo CMAT UTAD, Ctr Matemat, P-5000801 Vila Real, Portugal
[4] Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
关键词
fractional Sturm-Liouville problem; fractional calculus of variations; discrete fractional calculus; continuous fractional calculus; NUMERICAL-SOLUTION; BOUNDED DOMAINS; DIFFUSION; MECHANICS; DERIVATIVES; CALCULUS; DYNAMICS; EQUATION; MEDIA;
D O I
10.2140/jomms.2017.12.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fractional Sturm-Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore, obtaining solutions or approximations of solutions to this problem is of great importance. Here, we describe how the fractional Sturm-Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given to illustrate the method.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 50 条
  • [41] SHARP ASYMPTOTICS IN A FRACTIONAL STURM-LIOUVILLE PROBLEM
    Chigansky, Pavel
    Kleptsyna, Marina
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) : 715 - 738
  • [42] DISCONTINUOUS FRACTIONAL STURM-LIOUVILLE PROBLEMS WITH EIGEN-DEPENDENT BOUNDARY CONDITIONS
    Fu, Jing
    Hao, XiaoLing
    Li, Kun
    Yao, Siqin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 2037 - 2051
  • [43] A numerical approximation for generalized fractional Sturm-Liouville problem with application
    Goel, Eti
    Pandey, Rajesh K.
    Yadav, S.
    Agrawal, Om P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 417 - 436
  • [44] The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion
    Ciesielski, Mariusz
    Klimek, Malgorzata
    Blaszczyk, Tomasz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 573 - 588
  • [45] A self-adjoint fractional Sturm-Liouville problem with the general fractional derivatives
    Al-Jararha, Mohammadkheer
    Al-Refai, Mohammed
    Luchko, Yuri
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 413 : 110 - 128
  • [46] A Fractional Analysis in Higher Dimensions for the Sturm-Liouville Problem
    Milton Ferreira
    M. Manuela Rodrigues
    Nelson Vieira
    Fractional Calculus and Applied Analysis, 2021, 24 : 585 - 620
  • [47] A FRACTIONAL ANALYSIS IN HIGHER DIMENSIONS FOR THE STURM-LIOUVILLE PROBLEM
    Ferreira, Milton
    Rodrigues, M. Manuela
    Vieira, Nelson
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 585 - 620
  • [48] Fractional Sturm-Liouville Problem in Terms of Riesz Derivatives
    Klimek, Malgorzata
    THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2016, 357 : 3 - 16
  • [49] Variable-step finite difference schemes for the solution of Sturm-Liouville problems
    Amodio, Pierluigi
    Settanni, Giuseppina
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 641 - 649
  • [50] Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials
    Efremova, Liubov S.
    Freiling, Gerhard
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (11): : 2044 - 2051