VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS

被引:8
作者
Almeida, Ricardo [1 ]
Malinowska, Agnieszka B. [2 ]
Luisa Morgado, M. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro, Dept Math, Polo CMAT UTAD, Ctr Matemat, P-5000801 Vila Real, Portugal
[4] Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
关键词
fractional Sturm-Liouville problem; fractional calculus of variations; discrete fractional calculus; continuous fractional calculus; NUMERICAL-SOLUTION; BOUNDED DOMAINS; DIFFUSION; MECHANICS; DERIVATIVES; CALCULUS; DYNAMICS; EQUATION; MEDIA;
D O I
10.2140/jomms.2017.12.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fractional Sturm-Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore, obtaining solutions or approximations of solutions to this problem is of great importance. Here, we describe how the fractional Sturm-Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given to illustrate the method.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 50 条
  • [31] A Stepsize Variation Strategy for the Solution of Regular Sturm-Liouville Problems
    Amodio, Pierluigi
    Settanni, Giuseppina
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [32] Numerical approximation to Prabhakar fractional Sturm-Liouville problem
    Derakhshan, Mohammad Hossein
    Ansari, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
  • [33] Two classes of conformable fractional Sturm-Liouville problems: Theory and applications
    Mortazaasl, Hamid
    Jodayree Akbarfam, Ali Asghar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 166 - 195
  • [34] Pseudospectral method for fourth-order fractional Sturm-Liouville problems
    Bin Jebreen, Haifa
    Hernandez-Jimenez, Beatriz
    AIMS MATHEMATICS, 2024, 9 (09): : 26077 - 26091
  • [35] EXACT AND NUMERICAL SOLUTIONS OF THE FRACTIONAL STURM-LIOUVILLE PROBLEM
    Klimek, Malgorzata
    Ciesielski, Mariusz
    Blaszczyk, Tomasz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 45 - 71
  • [36] An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
    Kashkari, Bothayna S. H.
    Syam, Muhammed, I
    RESULTS IN PHYSICS, 2018, 9 : 560 - 569
  • [37] Theory and numerical approaches of high order fractional Sturm-Liouville problems
    Houlari, Tahereh
    Dehghan, Mohammad
    Biazar, Jafar
    Nouri, Alireza
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1564 - 1579
  • [38] ON SOME REGULAR FRACTIONAL STURM-LIOUVILLE PROBLEMS WITH GENERALIZED DIRICHLET CONDITIONS
    Bensidhoum, Fatima-Zahra
    Dib, Hacen
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2016, 28 (04) : 459 - 480
  • [39] Partial Inverse Sturm-Liouville Problems
    Bondarenko, Natalia P.
    MATHEMATICS, 2023, 11 (10)
  • [40] SHARP ASYMPTOTICS IN A FRACTIONAL STURM-LIOUVILLE PROBLEM
    Chigansky, Pavel
    Kleptsyna, Marina
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) : 715 - 738