VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS

被引:8
|
作者
Almeida, Ricardo [1 ]
Malinowska, Agnieszka B. [2 ]
Luisa Morgado, M. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro, Dept Math, Polo CMAT UTAD, Ctr Matemat, P-5000801 Vila Real, Portugal
[4] Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
关键词
fractional Sturm-Liouville problem; fractional calculus of variations; discrete fractional calculus; continuous fractional calculus; NUMERICAL-SOLUTION; BOUNDED DOMAINS; DIFFUSION; MECHANICS; DERIVATIVES; CALCULUS; DYNAMICS; EQUATION; MEDIA;
D O I
10.2140/jomms.2017.12.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fractional Sturm-Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore, obtaining solutions or approximations of solutions to this problem is of great importance. Here, we describe how the fractional Sturm-Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given to illustrate the method.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 50 条
  • [21] Inverse Sturm-Liouville problems with pseudospectral methods
    Altundag, H.
    Boeckmann, C.
    Taseli, H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1373 - 1384
  • [22] The canonical product of the solution of the Sturm-Liouville problems
    Hosseinabady, AN
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1999, 23 (02): : 141 - 146
  • [23] Sturm-Liouville problems
    Zettl, A
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 1 - 104
  • [24] Some notes on conformable fractional Sturm-Liouville problems
    Wang, Wei-Chuan
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [25] Inverse problems for a conformable fractional Sturm-Liouville operator
    Adalar, Ibrahim
    Ozkan, Ahmet Sinan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (06): : 775 - 782
  • [26] Eigenvalues of fractional Sturm-Liouville problems by successive method
    Maralani, Elnaz Massah
    Saei, Farhad Dastmalchi
    Akbarfam, Ali Asghar Jodayree
    Ghanbari, Kazem
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (04): : 1163 - 1175
  • [27] A STURM-LIOUVILLE APPROACH FOR CONTINUOUS AND DISCRETE MITTAG-LEFFLER KERNEL FRACTIONAL OPERATORS
    Mert, Raziye
    Abdeljawad, Thabet
    Peterson, Allan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2417 - 2434
  • [28] Some results on the fractional order Sturm-Liouville problems
    Yuanfang Ru
    Fanglei Wang
    Tianqing An
    Yukun An
    Advances in Difference Equations, 2017
  • [29] A Reliable Method for Solving Fractional Sturm-Liouville Problems
    Khashshan, M. M.
    Syam, Muhammed I.
    Al Mokhmari, Ahlam
    MATHEMATICS, 2018, 6 (10)
  • [30] From Sturm-Liouville problems to fractional and anomalous diffusions
    D'Ovidio, Mirko
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) : 3513 - 3544