Lexicographic behaviour of chains

被引:18
作者
Candeal, JC
Induráin, E
机构
[1] Univ Zaragoza, Fac Ciencias Econ & Empresariales, Dept Anal Econ, E-50005 Zaragoza, Spain
[2] Univ Publ Navarra, Dept Matemat & Informat, E-31006 Pamplona, Spain
关键词
Utility Function; Numerical Representation; Planar Chain; Lexicographic Product; Connected Chain;
D O I
10.1007/s000130050315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a different approach to the study of the existence of numerical representations of totally ordered sets (chains). We pay attention to the properties of non-representable chains showing that, under certain conditions, those chains must have a sort of lexicographic behaviour similar to that of the lexicographic plane. We prove that a countably bounded connected chain (Z, ?) admits a lexicographic decomposition as a subset of the lexicographic product R x Z. Then we apply our approach to state both a sufficient and a necessary condition for the lack of utility functions. The concept of planar chain is also introduced.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1970, COUNTEREXAMPLES TOPO
[2]  
[Anonymous], 1995, REPRESENTATIONS PREF
[3]  
Birkhoff G, 1967, Lattice Theory, V3
[4]  
Candeal J. C., 1990, REV REAL ACAD CIENCI, V84, P415
[5]   UTILITY-FUNCTIONS ON CHAINS [J].
CANDEAL, JC ;
INDURAIN, E .
JOURNAL OF MATHEMATICAL ECONOMICS, 1993, 22 (02) :161-168
[6]  
Cantor G., 1895, MATH ANN, V46, P481, DOI [DOI 10.1007/BF01450220, DOI 10.1007/BF02124929]
[7]  
Cantor Georg, 1895, Mathematische Annalen, V49, P207
[8]  
CUESTADUTARI N, 1943, REV MATEMATICA HISPA, V3, P242
[9]  
Dugundji J., 1966, TOPOLOGY
[10]   LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES - SURVEY [J].
FISHBURN, PC .
MANAGEMENT SCIENCE SERIES A-THEORY, 1974, 20 (11) :1442-1471