A discrete divergence free weak Galerkin finite element method for the Stokes equations

被引:25
作者
Mu, Lin [1 ]
Wang, Junping [2 ]
Ye, Xiu [3 ]
Zhang, Shangyou [4 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[3] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin; Finite element methods; The Stokes equations; Divergence free; CONSTRUCTION;
D O I
10.1016/j.apnum.2017.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discrete divergence free weak Galerkin finite element method is developed for the Stokes equations based on a weak Galerkin (WG) method introduced in [17]. Discrete divergence free bases are constructed explicitly for the lowest order weak Galerkin elements in two and three dimensional spaces. These basis functions can be derived on general meshes of arbitrary shape of polygons and polyhedrons. With the divergence free basis derived, the discrete divergence free WG scheme can eliminate pressure variable from the system and reduces a saddle point problem to a symmetric and positive definite system with many fewer unknowns. Numerical results are presented to demonstrate the robustness and accuracy of this discrete divergence free WG method. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 50 条