Distance Correlation-Based Brain Functional Connectivity Estimation and Non-Convex Multi-Task Learning for Developmental fMRI Studies

被引:7
作者
Xiao, Li [1 ]
Cai, Biao [1 ]
Qu, Gang [1 ]
Zhang, Gemeng [1 ]
Stephen, Julia M. [2 ]
Wilson, Tony W. [3 ]
Calhoun, Vince D. [4 ,5 ]
Wang, Yu-Ping [1 ]
机构
[1] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[2] Mind Res Network, Albuquerque, NM USA
[3] Univ Nebraska Med Ctr, Dept Neurol Sci, Omaha, NE USA
[4] Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[5] Emory Univ, Georgia Inst Technol, Atlanta, GA 30322 USA
关键词
Brain development; distance correlation; feature selection; functional connectivity; multi-task learning; SEX-DIFFERENCES; ALZHEIMERS-DISEASE; FEATURE-SELECTION; CLASSIFICATION; PREDICTION; NETWORKS; ORGANIZATION; REGRESSION; MATURITY;
D O I
10.1109/TBME.2022.3160447
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity (FC) patterns have been extensively used to delineate global functional organization of the human brain in healthy development and neuropsychiatric disorders. In this paper, we investigate how FC in males and females differs in an age prediction framework. Methods: We first estimate FC between regions-of-interest (ROIs) using distance correlation instead of Pearson's correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex between-ROI interactions. Then, we propose a novel non-convex multi-task learning (NC-MTL) model to study age-related gender differences in FC, where age prediction for each gender group is viewed as one task, and a composite regularizer with a combination of the non-convex l(2,1-2) and l(1-2) terms is introduced for selecting both common and task-specific features. Results and Conclusion:We validate the effectiveness of our NC-MTL model with distance correlation-based FC derived from rs-fMRI for predicting ages of both genders. The experimental results on the Philadelphia Neurodevelopmental Cohort demonstrate that our NC-MTL model outperforms several other competing MTL models in age prediction. We also compare the age prediction performance of our NC-MTL model using FC estimated by Pearson's correlation and distance correlation, which shows that distance correlation-based FC is more discriminative for age prediction than Pearson's correlation-based FC. Significance: This paper presents a novel framework for functional connectome developmental studies, characterizing developmental gender differences in FC patterns.
引用
收藏
页码:3039 / 3050
页数:12
相关论文
共 63 条
[1]   Developmental sex differences in resting state functional connectivity of amygdala sub-regions [J].
Alarcon, Gabriela ;
Cservenka, Anita ;
Rudolph, Marc D. ;
Fair, Damien A. ;
Nagel, Bonnie J. .
NEUROIMAGE, 2015, 115 :235-244
[2]  
[Anonymous], 2008, Cognition and sex differences
[3]  
[Anonymous], 2010, Neural Inf. Process. Syst. Neural Inf. Process. Syst., DOI DOI 10.1007/978-3-319-10690-8_12
[4]  
Argyriou A., 2007, ADV NEURAL INFORM PR, DOI [10.7551/mitpress/7503.003.0010, DOI 10.7551/MITPRESS/7503.003.0010]
[5]  
Binder J. R., 2013, SCIENCE, V342, P585
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction [J].
Brand, Lodewijk ;
Nichols, Kai ;
Wang, Hua ;
Shen, Li ;
Huang, Heng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) :1845-1855
[8]   The Neural Basis of Individual Differences in Directional Sense [J].
Burte, Heather ;
Turner, Benjamin O. ;
Miller, Michael B. ;
Hegarty, Mary .
FRONTIERS IN HUMAN NEUROSCIENCE, 2018, 12
[9]   Refined measure of functional connectomes for improved identifiability and prediction [J].
Cai, Biao ;
Zhang, Gemeng ;
Hu, Wenxing ;
Zhang, Aiying ;
Zille, Pascal ;
Zhang, Yipu ;
Stephen, Julia M. ;
Wilson, Tony W. ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
HUMAN BRAIN MAPPING, 2019, 40 (16) :4843-4858
[10]   Functional brain networks in schizophrenia: a review [J].
Calhoun, Vince D. ;
Eichele, Tom ;
Pearlson, Godfrey .
FRONTIERS IN HUMAN NEUROSCIENCE, 2009, 3