Multi-surface analysis for human action recognition in video

被引:4
作者
Zhang, Hong-Bo [1 ]
Lei, Qing [1 ]
Zhong, Bi-Neng [1 ]
Du, Ji-Xiang [1 ]
Peng, Jialin [1 ]
Hsiao, Tsung-Chih [1 ]
Chen, Duan-Sheng [1 ]
机构
[1] Huaqiao Univ, Dept Comp Sci & Technol, Fujian, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Human action recognition; Multi-view video analysis; Three surfaces motion feature; Probability inference; REPRESENTATION;
D O I
10.1186/s40064-016-2876-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The majority of methods for recognizing human actions are based on single-view video or multi-camera data. In this paper, we propose a novel multi-surface video analysis strategy. The video can be expressed as three-surface motion feature (3SMF) and spatio-temporal interest feature. 3SMF is extracted from the motion history image in three different video surfaces: horizontal-vertical, horizontal- and vertical-time surface. In contrast to several previous studies, the prior probability is estimated by 3SMF rather than using a uniform distribution. Finally, we model the relationship score between each video and action as a probability inference to bridge the feature descriptors and action categories. We demonstrate our methods by comparing them to several state-of-the-arts action recognition benchmarks.
引用
收藏
页数:14
相关论文
共 32 条
  • [1] Human Activity Analysis: A Review
    Aggarwal, J. K.
    Ryoo, M. S.
    [J]. ACM COMPUTING SURVEYS, 2011, 43 (03)
  • [2] Motion history image: its variants and applications
    Ahad, Md. Atiqur Rahman
    Tan, J. K.
    Kim, H.
    Ishikawa, S.
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (02) : 255 - 281
  • [3] [Anonymous], 2016, ADBU J ENG TECHNOL
  • [4] Instantaneous threat detection based on a semantic representation of activities, zones and trajectories
    Burghouts, G. J.
    Schutte, K.
    ten Hove, R. J. -M.
    van den Broek, S. P.
    Baan, J.
    Rajadell, O.
    van Huis, J. R.
    van Rest, J.
    Hanckmann, P.
    Bouma, H.
    Sanroma, G.
    Evans, M.
    Ferryman, J.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 : S191 - S200
  • [5] Selective spatio-temporal interest points
    Chakraborty, Bhaskar
    Holte, Michael B.
    Moeslund, Thomas B.
    Gonzalez, Jordi
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (03) : 396 - 410
  • [6] On-line deep learning method for action recognition
    Charalampous, Konstantinos
    Gasteratos, Antonios
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (02) : 337 - 354
  • [7] Dawn D, 2015, VISUAL COMPUT, V32, P289
  • [8] Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition
    Gao, Z.
    Zhang, H.
    Xu, G. P.
    Xue, Y. B.
    Hauptmann, A. G.
    [J]. SIGNAL PROCESSING, 2015, 112 : 83 - 97
  • [9] Ikizler-Cinbis N, 2010, 11 EUR C COMP VIS EC
  • [10] View-Independent Action Recognition from Temporal Self-Similarities
    Junejo, Imran N.
    Dexter, Emilie
    Laptev, Ivan
    Perez, Patrick
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) : 172 - 185