Resolved-sideband cooling of a micromechanical oscillator

被引:547
作者
Schliesser, A. [1 ]
Riviere, R. [1 ]
Anetsberger, G. [1 ]
Arcizet, O. [1 ]
Kippenberg, T. J. [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1038/nphys939
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In atomic laser cooling, preparation of the motional quantum ground state has been achieved using resolved-sideband cooling of trapped ions. Here, we report the first demonstration of resolved-sideband cooling of a mesoscopic mechanical oscillator, a key step towards ground-state cooling as quantum back-action is sufficiently suppressed in this scheme. A laser drives the first lower sideband of an optical microcavity resonance, the decay rate of which is twenty times smaller than the eigenfrequency of the associated mechanical oscillator. Cooling rates above 1.5 MHz are attained, three orders of magnitude higher than the intrinsic dissipation rate of the mechanical device that is independently monitored at the 10(-18) m/root Hz level. Direct spectroscopy of the motional sidebands of the cooling laser confirms the expected suppression of motional increasing processes during cooling. Moreover, using two-mode pumping, this regime could enable motion measurement beyond the standard quantum limit and the concomitant generation of nonclassical states of motion.
引用
收藏
页码:415 / 419
页数:5
相关论文
共 41 条
  • [31] Radiation-pressure-driven micro-mechanical oscillator
    Rokhsari, H
    Kippenberg, TJ
    Carmon, T
    Vahala, KJ
    [J]. OPTICS EXPRESS, 2005, 13 (14): : 5293 - 5301
  • [32] Radiation pressure cooling of a micromechanical oscillator using dynamical backaction
    Schliesser, A.
    Del'Haye, P.
    Nooshi, N.
    Vahala, K. J.
    Kippenberg, T. J.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (24)
  • [33] Putting mechanics into quantum mechanics
    Schwab, KC
    Roukes, ML
    [J]. PHYSICS TODAY, 2005, 58 (07) : 36 - 42
  • [34] THE SEMICLASSICAL THEORY OF LASER COOLING
    STENHOLM, S
    [J]. REVIEWS OF MODERN PHYSICS, 1986, 58 (03) : 699 - 739
  • [35] Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
    Thompson, J. D.
    Zwickl, B. M.
    Jayich, A. M.
    Marquardt, Florian
    Girvin, S. M.
    Harris, J. G. E.
    [J]. NATURE, 2008, 452 (7183) : 72 - U5
  • [36] Coupled ion-nanomechanical systems
    Tian, L
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (26)
  • [37] Theory of ground state cooling of a mechanical oscillator using dynamical backaction
    Wilson-Rae, I.
    Nooshi, N.
    Zwerger, W.
    Kippenberg, T. J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (09)
  • [38] Laser cooling of a nanomechanical resonator mode to its quantum ground state
    Wilson-Rae, I
    Zoller, P
    Imamoglu, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (07)
  • [39] WINELAND D, 1975, B AM PHYS SOC, V20, P637
  • [40] LASER COOLING OF ATOMS
    WINELAND, DJ
    ITANO, WM
    [J]. PHYSICAL REVIEW A, 1979, 20 (04): : 1521 - 1540