High-temperature heat capacity and thermal expansion of the MnTa2O6

被引:13
|
作者
Gulyaeva, R., I [1 ]
Petrova, S. A. [2 ]
Chumarev, V. M. [1 ]
Selivanov, E. N. [1 ]
机构
[1] Russian Acad Sci, Lab Pyromet Nonferrous Met, Inst Met, Ural Branch, 101 Amundsen St, Ekaterinburg 620016, Russia
[2] Russian Acad Sci, Lab Phys Chem Met Melts, Inst Met, Ural Branch, 101 Amundsen St, Ekaterinburg 620016, Russia
关键词
Heat capacity; Thermal expansion; Manganese tantalate; CRYSTAL-STRUCTURE; DIELECTRIC-PROPERTIES; STABILIZED ZIRCONIA; MN; MNNB2O6; PHASES; COLUMBITES; REFINEMENT; ELECTRODE; ENTHALPY;
D O I
10.1016/j.jallcom.2020.155153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sample of the MnTa2O6 manganese tantalate was synthesized from MnO and Ta2O5 mixture by the ceramic technique. According to XRD it was a single-phase sample with an orthorhombic structure (sp.gr. Pbcn) and unit cell parameters: a = 14.4478(2) angstrom; b = 5.7677(1) angstrom; c = 5.0943(1) angstrom; V = 424.52(1) angstrom(3) . Heat capacity was measured by differential scanning calorimetry in the range of 323-1203 K in a dynamic mode. Experimental molar heat capacity was fitted to C-p.m = 191.33 + 67.451 x 10(-3) T 32.71 x 10(5) T-2 - 18.76 x 10(-6) T-2 equation based on which the value of the C-p.m29(8.15)(MnTa2O6) = 173.0 +/- 1.7 J mol(-1)K(-1) was calculated. By HT-XRD thermal dependences of the MnTa2O6 unit cell parameters in the temperature range of 300-1203 K were established. From the data obtained thermal expansion coefficients and anisotropy factors were calculated. Thermal expansion anisotropy was linked to the layered structure of the oxide. The correlation among molar heat capacity values and volume thermal expansion coefficients were revealed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High-temperature γ ⇆ β′ ⇆ α phase transitions in Ca2B2O5: Thermal expansion and crystal structure of α-phase
    Yukhno, Valentina
    Volkov, Sergey
    Bubnova, Rimma
    Povolotskiy, Alexey
    Ugolkov, Valery
    SOLID STATE SCIENCES, 2021, 121
  • [22] Heat Capacity and Thermal Expansion of LaMgAl11O19
    Gagarin, P. G.
    Guskov, A. V.
    Guskov, V. N.
    Nikiforova, G. E.
    Gavrcihev, K. S.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (06) : 879 - 885
  • [23] Low-temperature heat capacity and high-temperature enthalpy of LuSi
    Gorbachuk, N. P.
    Kirienko, S. N.
    Sidorko, V. R.
    Obushenko, I. M.
    POWDER METALLURGY AND METAL CERAMICS, 2012, 51 (3-4) : 229 - 233
  • [24] High-temperature structure, elasticity, and thermal expansion of ε-ZrH 1.8
    Torres, James R.
    Mizzi, Christopher A.
    Rehn, Daniel A.
    Smith, Tyler
    Paisner, Scarlett Widgeon
    Terricabras, Adrien J.
    Parkison, Darren M.
    Vogel, Sven C.
    Kohnert, Caitlin A.
    Hayne, Mathew L.
    Nizolek, Thomas J.
    Torrez, M. A.
    Munroe, Tannor T. J.
    Maiorov, Boris
    Saleh, Tarik A.
    Shivprasad, Aditya P.
    JOURNAL OF NUCLEAR MATERIALS, 2025, 603
  • [25] Heat capacity and thermal expansion of water
    Putintsev, NM
    DOKLADY PHYSICAL CHEMISTRY, 2005, 401 (4-6) : 49 - 52
  • [26] Heat capacity and thermal expansion of water
    N. M. Putintsev
    Doklady Physical Chemistry, 2005, 401 : 49 - 52
  • [27] High-temperature study and thermal expansion of phlogopite
    F. Tutti
    L. S. Dubrovinsky
    M. Nygren
    Physics and Chemistry of Minerals, 2000, 27 : 599 - 603
  • [28] High-temperature study and thermal expansion of phlogopite
    Tutti, F
    Dubrovinsky, LS
    Nygren, M
    PHYSICS AND CHEMISTRY OF MINERALS, 2000, 27 (09) : 599 - 603
  • [29] Low- and high-temperature heat capacity of metallic technetium
    Zappey, J. N.
    Moore, E. E.
    Benes, O.
    Griveau, J. -c.
    Konings, R. J. M.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2024, 189
  • [30] Low-temperature heat capacity and thermal behavior of Zn0.98Co0.02O in the high-temperature region
    K. S. Gavrichev
    A. V. Tyurin
    M. A. Ryumin
    A. V. Khoroshilov
    G. D. Nipan
    V. A. Ketsko
    T. N. Kol’tsova
    I. Yu. Pinus
    G. A. Buzanov
    N. A. Votinova
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1 - 5