Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way?

被引:19
作者
Bruschetta, Roberta [1 ,2 ]
Tartarisco, Gennaro [1 ]
Lucca, Lucia Francesca [3 ]
Leto, Elio [3 ]
Ursino, Maria [3 ]
Tonin, Paolo [3 ]
Pioggia, Giovanni [1 ]
Cerasa, Antonio [1 ,3 ,4 ]
机构
[1] Natl Res Council Italy CNR, Inst Biomed Res & Innovat IRIB, I-98164 Messina, Italy
[2] Univ Campus Biomed Roma, Dept Engn, Via Alvaro Portillo 21, I-00128 Rome, Italy
[3] S Anna Inst, I-88900 Crotone, Italy
[4] Univ Calabria, Dept Pharm Hlth Sci & Nutr, Predin & Translat Pharmacol, Pharmacotechnol Documentat & Transfer Unit, I-87036 Arcavacata Di Rende, Italy
关键词
traumatic brain injury; outcome predictors; linear regression; machine learning; ensemble of classifiers; FEATURE-SELECTION; HEAD-INJURY; DISABILITY; SCALE; COMA;
D O I
10.3390/biomedicines10030686
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the main challenges in traumatic brain injury (TBI) patients is to achieve an early and definite prognosis. Despite the recent development of algorithms based on artificial intelligence for the identification of these prognostic factors relevant for clinical practice, the literature lacks a rigorous comparison among classical regression and machine learning (ML) models. This study aims at providing this comparison on a sample of TBI patients evaluated at baseline (TO), after 3 months from the event (T1), and at discharge (T2). A Classical Linear Regression Model (LM) was compared with independent performances of Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB) and Decision Tree (DT) algorithms, together with an ensemble ML approach. The accuracy was similar among LM and ML algorithms on the analyzed sample when two classes of outcome (Positive vs. Negative) approach was used, whereas the NB algorithm showed the worst performance. This study highlights the utility of comparing traditional regression modeling to ML, particularly when using a small number of reliable predictor variables after TBI. The dataset of clinical data used to train ML algorithms will be publicly available to other researchers for future comparisons.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach [J].
Abujaber, Ahmad ;
Fadlalla, Adam ;
Gammoh, Diala ;
Abdelrahman, Husham ;
Mollazehi, Monira ;
El-Menyar, Ayman .
SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2020, 28 (01)
[2]  
Akanbi O.A., 2014, MACHINE LEARNING APP
[3]   Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population [J].
Amorim, Robson Luis ;
Oliveira, Louise Makarem ;
Malbouisson, Luis Marcelo ;
Nagumo, Marcia Mitie ;
Simoes, Marcela ;
Miranda, Leandro ;
Bor-Seng-Shu, Edson ;
Beer-Furlan, Andre ;
De Andrade, Almir Ferreira ;
Rubiano, Andres M. ;
Teixeira, Manoel Jacobsen ;
Kolias, Angelos G. ;
Paiva, Wellingson Silva .
FRONTIERS IN NEUROLOGY, 2020, 10
[4]  
Berrar D., 2019, ENCY BIOFORMATICS CO, P542, DOI [10.1016/B978-0-12-809633-8.20349-X, DOI 10.1016/B978-0-12-809633-8.20349-X, 10.1016 /B978-0-12-809633-8.20349-X]
[5]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[6]  
Cristianini N., 2000, INTRO SUPPORT VECTOR
[7]   k-Nearest Neighbour Classifiers - A Tutorial [J].
Cunningham, Padraig ;
Delany, Sarah Jane .
ACM COMPUTING SURVEYS, 2021, 54 (06)
[8]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[9]   Minimum redundancy feature selection from microarray gene expression data [J].
Ding, C ;
Peng, HC .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :523-528
[10]  
Duda R. O., 1973, Pattern Classification