Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure

被引:11
作者
Morzy, Diana [1 ,2 ]
Joshi, Himanshu [3 ]
Sandler, Sarah E. [1 ]
Aksimentiev, Aleksei [3 ,4 ]
Keyser, Ulrich F. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Ecole Polytech Fed Lausanne, Programmable Biomat Lab, Sch Engn, Route Cantonale, CH-1015 Lausanne, Switzerland
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
DNA structures; lipid membranes; tilt; nicks; protein-mimicking; synthetic ion channel; LIPID-BILAYER; HYDROPHOBIC MISMATCH; CHAIN-LENGTH; CHOLESTEROL; NANOSTRUCTURES; DETERMINANTS; LIPOSOMES; TRANSPORT; NANOPORES; STACKING;
D O I
10.1021/acs.nanolett.1c03791
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.
引用
收藏
页码:9789 / 9796
页数:8
相关论文
共 65 条
[1]   A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes [J].
Arnott, Patrick M. ;
Howorka, Stefan .
ACS NANO, 2019, 13 (03) :3334-3340
[2]   Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly [J].
Baumann, Kevin N. ;
Piantanida, Luca ;
Garcia-Nafria, Javier ;
Sobota, Diana ;
Voitchovsky, Kislon ;
Knowles, Tuomas P. J. ;
Hernandez-Ainsa, Silvia .
ACS NANO, 2020, 14 (02) :2316-2323
[3]   On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers [J].
Ben-Dror, Shimshon ;
Bronshtein, Irena ;
Wiehe, Arno ;
Roeder, Beate ;
Senge, Mathias O. ;
Ehrenberg, Benjamin .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2006, 82 (03) :695-701
[4]   Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes [J].
Bennett, W. F. Drew ;
Tieleman, D. Peter .
JOURNAL OF LIPID RESEARCH, 2012, 53 (03) :421-429
[5]   Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials [J].
Birkholz, Oliver ;
Burns, Jonathan R. ;
Richter, Christian P. ;
Psathaki, Olympia E. ;
Howorka, Stefan ;
Piehler, Jacob .
NATURE COMMUNICATIONS, 2018, 9
[6]  
Brosh RM, 1997, J BIOL CHEM, V272, P572
[7]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
[8]   Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor [J].
Burns, Jonathan R. ;
Goepfrich, Kerstin ;
Wood, James W. ;
Thacker, Vivek V. ;
Stulz, Eugen ;
Keyser, Ulrich F. ;
Howorka, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (46) :12069-12072
[9]   Self-Assembled DNA Nanopores That Span Lipid Bilayers [J].
Burns, Jonathan R. ;
Stulz, Eugen ;
Howorka, Stefan .
NANO LETTERS, 2013, 13 (06) :2351-2356
[10]   Spatial Presentation of Cholesterol Units on a DNA Cube as a Determinant of Membrane Protein-Mimicking Functions [J].
Chidchob, Pongphak ;
Offenbartl-Stiegert, Daniel ;
McCarthy, Dillon ;
Luo, Xin ;
Li, Jianing ;
Howorka, Stefan ;
Sleiman, Hanadi F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (02) :1100-1108