Fixed Point Algebras for Easy Quantum Groups

被引:3
作者
Gabriel, Olivier [1 ]
Weber, Moritz [2 ]
机构
[1] Univ Copenhagen, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[2] Univ Saarland, Fachbereich Math, Postfach 151150, D-66041 Saarbrucken, Germany
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
K-theory; Kirchberg algebras; easy quantum groups; noncrossing partitions; fusion rules; free actions; free orthogonal quantum groups; quantum permutation groups; quantum reflection groups; C-ASTERISK-ALGEBRAS; CUNTZ ALGEBRAS; COMPACT-GROUPS; HOPF-ALGEBRAS; DUALITY; FUSION; PRODUCTS;
D O I
10.3842/SIGMA.2016.097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author, we prove that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S-n(+), the free orthogonal quantum group O-n(+) and the quantum reflection groups H-n(s+). Our fixed point-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups, which are related to Hopf-Galois extensions.
引用
收藏
页数:21
相关论文
共 44 条
[1]  
[Anonymous], ARXIV13042812
[2]  
[Anonymous], RES NOTES MATH
[3]  
[Anonymous], 1994, PREPRINT
[4]   Symmetries of a generic coaction [J].
Banica, T .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :763-780
[5]   Free Bessel Laws [J].
Banica, T. ;
Belinschi, S. T. ;
Capitaine, M. ;
Collins, B. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01) :3-37
[6]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[7]   Liberation of orthogonal Lie groups [J].
Banica, Teodor ;
Speicher, Roland .
ADVANCES IN MATHEMATICS, 2009, 222 (04) :1461-1501
[8]  
Banica T, 2009, J NONCOMMUT GEOM, V3, P327
[9]  
Banica Teodor, 2007, J. Ramanujan Math. Soc., V22, P345
[10]   Duality of compact groups and Hilbert C*-systems for C*-algebras with a nontrivial center [J].
Baumgärtel, H ;
Lledó, F .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (08) :759-812