A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance

被引:38
作者
Kim Hang Ng [1 ]
Minggu, Lorna Jeffery [1 ]
Mark-Lee, Wun Fui [2 ]
Arifin, Khuzaimah [1 ]
Jumali, Mohammad Hafizuddin Hj [1 ,3 ]
Kassim, Mohammad B. [1 ,2 ]
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Sch Chem Sci & Food Technol, Fac Sci & Technol, Bangi 43600, Selangor, Malaysia
[3] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Appl Phys, Bangi 43600, Selangor, Malaysia
关键词
WO3; Ultrathin Fe2O3; Direct water splitting; Methanol oxidation; HYDROGEN-PRODUCTION; WATER OXIDATION; THIN-FILMS; PHOTOANODES; HEMATITE; DECOMPOSITION; ALPHA-FE2O3;
D O I
10.1016/j.materresbull.2017.04.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A bilayer WO3/Fe2O3 heterojunction photoelectrode was prepared with a new approach for photoelectrochemical reactions. WO3 was deposited onto an FTO conductive glass substrate via electrodeposition, followed by the deposition of an ultrathin Fe2O3 layer using the chemical bath deposition method. The presence of Fe2O3 layer improved the light absorption of WO3/Fe2O3 toward visible light region (red-shift). The addition of a thin layer of Fe2O3 on WO3 resulted in higher photocatalytic performance (two-fold improvement) compared to that of pristine WO3. In addition, the WO3/Fe2O3 photoelectrode also showed a positive photoresponse for methanol degradation. The photocurrent generation of the bilayer photoelectrode improved 1.6-fold with the addition of methanol as a sacrificial donor. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 49 条
[1]   Nanoporous hematite structures to overcome short diffusion lengths in water splitting [J].
Ahn, Hyo-Jin ;
Kwak, Myung-Jun ;
Lee, Jung-Soo ;
Yoon, Ki-Yong ;
Jang, Ji-Hyun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (47) :19999-20003
[2]   Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films [J].
Alenzi, Naser ;
Liao, Wei-Ssu ;
Cremer, Paul S. ;
Sanchez-Torres, Viviana ;
Wood, Thomas K. ;
Ehlig-Economides, Christine ;
Cheng, Zhengdong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (21) :11768-11775
[3]   Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes [J].
Barroso, Monica ;
Pendlebury, Stephanie R. ;
Cowan, Alexander J. ;
Durrant, James R. .
CHEMICAL SCIENCE, 2013, 4 (07) :2724-2734
[4]   Hydrogen photo-evolution over the spinel CuCr2O4 [J].
Boumaza, Souhila ;
Bouarab, Rabah ;
Trari, Mohamed ;
Bouguelia, Aissa .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (01) :62-68
[5]   Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation [J].
Chatchai, Ponchio ;
Murakami, Yoshinori ;
Kishioka, Shin-ya ;
Nosaka, Atsuko Y. ;
Nosaka, Yoshio .
ELECTROCHIMICA ACTA, 2009, 54 (03) :1147-1152
[6]   NH4-doped anodic WO3 prepared through anodization and subsequent NH4OH treatment for water splitting [J].
Choi, Yong-Wook ;
Kim, Sunkyu ;
Seong, Mijeong ;
Yoo, Hyeonseok ;
Choi, Jinsub .
APPLIED SURFACE SCIENCE, 2015, 324 :414-418
[7]   Nanostructured bilayered thin films in photoelectrochemical water splitting - A review [J].
Choudhary, Surbhi ;
Upadhyay, Sumant ;
Kumar, Pushpendra ;
Singh, Nirupama ;
Satsangi, Vibha R. ;
Shrivastav, Rohit ;
Dass, Sahab .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (24) :18713-18730
[8]   Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation [J].
Coridan, Robert H. ;
Nielander, Adam C. ;
Francis, Sonja A. ;
McDowell, Matthew T. ;
Dix, Victoria ;
Chatman, Shawn M. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2886-2901
[9]  
DohLeviL-MitroviL Z., 2016, MAT RES B, V83, P217
[10]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337