Unified approach for Euler-Lagrange equation arising in calculus of variations

被引:0
作者
Naidu, DS [1 ]
Imura, Y [1 ]
机构
[1] Idaho State Univ, Coll Engn, Measurement & Control Engn Res Ctr, Pocatello, ID 83209 USA
来源
PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the development of a unified approach for the necessary conditions for optimization of a functional arising in calculus of variations. In particular, we develop a unified approach for the Euler-Lagrange equation, that is simultaneously applicable to both shift (q)-operator-based discrete-time systems and the derivative (d/dt)-operator-based continuous-time systems. It is shown that the Euler-Lagrange results that are now obtained separately for continuous-time and discrete-time systems can be easily obtained from the unified approach. An illustrative example is given.
引用
收藏
页码:3263 / 3268
页数:6
相关论文
共 50 条
  • [31] Euler-Lagrange equations for the Gribov reggeon calculus in QCD and in gravity
    Lipatov, L. N.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (28-29):
  • [32] Euler-Lagrange equation: Case of energy-optimal approach for induction machine
    Abdelati, Riadh
    Mimouni, M. Faouzi
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (06) : 998 - 1017
  • [33] AN APPROXIMATION OF THE ANALYTICAL SOLUTION OF THE FRACTIONAL EULER-LAGRANGE EQUATION
    Ciesielski, Mariusz
    Blaszczyk, Tomasz
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (04) : 23 - 30
  • [34] Stabilities and instabilities of Euler-Lagrange cubic functional equation
    Ganapathy, G.
    Sakthi, R.
    Karthikeyan, S.
    Vijaya, N.
    Suresh, M.
    Venkataramanan, K.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 35 (01): : 82 - 95
  • [35] A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction
    Messa, Gianandrea Vittorio
    Ferrarese, Giacomo
    Malavasi, Stefano
    [J]. WEAR, 2015, 342 : 138 - 153
  • [36] EULER-LAGRANGE EQUATION AND CONSERVATION LAWS FOR BILOCAL FIELDS
    MITA, K
    [J]. PHYSICAL REVIEW C, 1978, : 4545 - 4547
  • [37] On the Euler-Lagrange equation of a functional by Pólya and Szegö
    N. Fusco
    X. Zhong
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [38] Necessary Condition for an Euler-Lagrange Equation on Time Scales
    Dryl, Monika
    Torres, Delfim F. M.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [39] The validity of the Euler-Lagrange equation for solutions to variational problems
    Cellina, Arrigo
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) : 577 - 586
  • [40] The Euler-Lagrange equation for the Anisotropic least gradient problem
    Mazon, Jose M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 452 - 472