Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques

被引:91
|
作者
Peng, Yiming [1 ]
Unluer, Cise [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
关键词
Geopolymers; Compressive strength; Machine learning; Support vector machine; Backpropagation neural network; Extreme learning machine; ARTIFICIAL NEURAL-NETWORK; SELF-COMPACTING CONCRETE; BLAST-FURNACE SLAG; COMPRESSIVE STRENGTH; CEMENT; PREDICTION; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2021.125785
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fly ash (FA)-based geopolymer concrete is considered as an alternative system with potentially lower environmental impact than Portland cement mixes. However, the prediction accuracy of compressive strength still needs to be improved. This study demonstrated the feasibility of predicting the 28-day strength of geopolymer concrete through mix proportions and pre-curing conditions by using three machine learning algorithms (back-propagation neural network (BPNN), support vector machine (SVM) and extreme learning machine (ELM)) and provided a comparison of their differences, highlighting variations in prediction accuracy. As a part of the evaluation of model performance and error analysis, the prediction accuracy differences of these three models in training, validation and testing sets were discussed, and the influence weight of each input parameter on results was analyzed by permutation feature importance (PFI) index. Results showed that all models revealed good prediction performance for the overall database. BPNN model had the largest number of instances where the error percentage was within +/- 20%. SVM model showed the highest generalization capability and most stable prediction accuracy among all three. Out of different variables investigated, SiO2 content in FA had the highest influence on strength, followed by Al2O3 content and activator content/concentration. These outcomes can enable reductions in experimental time, labor, materials and costs; and facilitate the adoption of alternative binders in the concrete industry.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Performance evaluation of fly ash-based geopolymer concrete incorporating nano slag
    Ali, I. M.
    Naje, A. S.
    Al-Zubaidi, H. A. M.
    Al-Kateeb, R. T.
    GLOBAL NEST JOURNAL, 2019, 21 (01): : 70 - 75
  • [22] Influence of red mud on performance enhancement of fly ash-based geopolymer concrete
    Bellum, Ramamohana Reddy
    Venkatesh, Chava
    Madduru, Sri Rama Chand
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (04)
  • [23] Influence of red mud on performance enhancement of fly ash-based geopolymer concrete
    Ramamohana Reddy Bellum
    Chava Venkatesh
    Sri Rama Chand Madduru
    Innovative Infrastructure Solutions, 2021, 6
  • [24] Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete
    Saxena, Rajat
    Gupta, Trilok
    Sharma, Ravi K.
    Panwar, N. L.
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2021, 23 (12) : 17810 - 17834
  • [25] Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete
    Rajat Saxena
    Trilok Gupta
    Ravi K. Sharma
    N. L. Panwar
    Environment, Development and Sustainability, 2021, 23 : 17810 - 17834
  • [26] Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
    Shi Yuqiong
    Li Jingyi
    Zhang Yang
    Li Li
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2025, 40 (01): : 65 - 78
  • [27] The microstructure and durability of fly ash-based geopolymer concrete: A review
    Fu, Qiang
    Xu, Wenrui
    Zhao, Xu
    Bu, MengXin
    Yuan, Qiang
    Niu, Ditao
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 29550 - 29566
  • [28] Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
    石玉琼
    LI Jingyi
    ZHANG Yang
    李黎
    Journal of Wuhan University of Technology(Materials Science), 2025, 40 (01) : 65 - 78
  • [29] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Jyotirmoy Mishra
    Bharadwaj Nanda
    Sanjaya K. Patro
    Shaswat K. Das
    Syed M. Mustakim
    Journal of Material Cycles and Waste Management, 2022, 24 : 1095 - 1108
  • [30] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Mishra, Jyotirmoy
    Nanda, Bharadwaj
    Patro, Sanjaya K.
    Das, Shaswat K.
    Mustakim, Syed M.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2022, 24 (03) : 1095 - 1108