Edge Switching Transformations of Quantum Graphs

被引:6
作者
Aizenman, M. [1 ,2 ]
Schanz, H. [3 ]
Smilansky, U. [4 ]
Warzel, S. [5 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[3] Univ Appl Sci Magdeburg Stendal, Inst Mech Engn, D-39114 Magdeburg, Germany
[4] Weizmann Inst Sci, Dept Phys Complex Syst, IL-7610001 Rehovot, Israel
[5] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Garching, Germany
基金
美国国家科学基金会;
关键词
ONE HEAR; CHAOS; SHAPE;
D O I
10.12693/APhysPolA.132.1699
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discussed here are the effects of basics graph transformations on the spectra of associated quantum graphs. In particular it is shown that under an edge switch the spectrum of the transformed Schrodinger operator is interlaced with that of the original one. By implication, under edge swap the spectra before and after the transformation, denoted by {E-n}(n=1)(infinity) and {(E) over bar (n)}(n=1)(infinity) correspondingly, are level-2 interlaced, so that En-2 <= (E) over bar (n) <= En+2. The proofs are guided by considerations of the quantum graphs' discrete analogs.
引用
收藏
页码:1699 / 1703
页数:5
相关论文
共 20 条
[1]   A remark on Krein's resolvent formula and boundary conditions [J].
Albeverio, S ;
Pankrashkin, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22) :4859-4864
[2]  
[Anonymous], 1974, P 5 SE C COMBINATORI
[3]   The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions [J].
Band, Ram ;
Berkolaiko, Gregory ;
Raz, Hillel ;
Smilansky, Uzy .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (03) :815-838
[4]   Scattering matrices and Weyl functions [J].
Behrndt, Jussi ;
Malamud, Mark M. ;
Neidhardt, Hagen .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 :568-598
[5]  
Berkolaiko G, 2012, AMS MATH SURVEYS MON, V186
[6]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[7]   Quantum graphs: Applications to quantum chaos and universal spectral statistics [J].
Gnutzmann, Sven ;
Smilansky, Uzy .
ADVANCES IN PHYSICS, 2006, 55 (5-6) :527-625
[8]   Can one hear the shape of a graph? [J].
Gutkin, B ;
Smilansky, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31) :6061-6068
[9]   Experimental simulation of quantum graphs by microwave networks [J].
Hul, O ;
Bauch, S ;
Pakonski, P ;
Savytskyy, N ;
Zyczkowski, K ;
Sirko, L .
PHYSICAL REVIEW E, 2004, 69 (05) :7-1
[10]  
Hundertmark D., 1998, Adv. Theor. Math. Phys, V2, P719, DOI [10.4310/ATMP.1998.v2.n4.a2, DOI 10.4310/ATMP.1998.V2.N4.A2]