A Novel Random Effect Model for GWAS Meta-Analysis and Its Application to Trans-Ethnic Meta-Analysis

被引:13
作者
Shi, Jingchunzi [1 ]
Lee, Seunggeun [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Effect-size heterogeneity; GWAS; Kernel regression; Meta-analysis; Random effect model; Trans-ethnic meta-analysis; GENOME-WIDE ASSOCIATION; SEQUENCING ASSOCIATION; MIXED MODELS;
D O I
10.1111/biom.12481
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-analysis of trans-ethnic genome-wide association studies (GWAS) has proven to be a practical and profitable approach for identifying loci that contribute to the risk of complex diseases. However, the expected genetic effect heterogeneity cannot easily be accommodated through existing fixed-effects and random-effects methods. In response, we propose a novel random effect model for trans-ethnic meta-analysis with flexible modeling of the expected genetic effect heterogeneity across diverse populations. Specifically, we adopt a modified random effect model from the kernel regression framework, in which genetic effect coefficients are random variables whose correlation structure reflects the genetic distances across ancestry groups. In addition, we use the adaptive variance component test to achieve robust power regardless of the degree of genetic effect heterogeneity. Simulation studies show that our proposed method has well-calibrated type I error rates at very stringent significance levels and can improve power over the traditional meta-analysis methods. We reanalyzed the published type 2 diabetes GWAS meta-analysis (Consortium et al., 2014) and successfully identified one additional SNP that clearly exhibits genetic effect heterogeneity across different ancestry groups. Furthermore, our proposed method provides scalable computing time for genome-wide datasets, in which an analysis of one million SNPs would require less than 3 hours.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 21 条
[1]   Integrating common and rare genetic variation in diverse human populations [J].
Altshuler, David M. ;
Gibbs, Richard A. ;
Peltonen, Leena ;
Dermitzakis, Emmanouil ;
Schaffner, Stephen F. ;
Yu, Fuli ;
Bonnen, Penelope E. ;
de Bakker, Paul I. W. ;
Deloukas, Panos ;
Gabriel, Stacey B. ;
Gwilliam, Rhian ;
Hunt, Sarah ;
Inouye, Michael ;
Jia, Xiaoming ;
Palotie, Aarno ;
Parkin, Melissa ;
Whittaker, Pamela ;
Chang, Kyle ;
Hawes, Alicia ;
Lewis, Lora R. ;
Ren, Yanru ;
Wheeler, David ;
Muzny, Donna Marie ;
Barnes, Chris ;
Darvishi, Katayoon ;
Hurles, Matthew ;
Korn, Joshua M. ;
Kristiansson, Kati ;
Lee, Charles ;
McCarroll, Steven A. ;
Nemesh, James ;
Keinan, Alon ;
Montgomery, Stephen B. ;
Pollack, Samuela ;
Price, Alkes L. ;
Soranzo, Nicole ;
Gonzaga-Jauregui, Claudia ;
Anttila, Verneri ;
Brodeur, Wendy ;
Daly, Mark J. ;
Leslie, Stephen ;
McVean, Gil ;
Moutsianas, Loukas ;
Nguyen, Huy ;
Zhang, Qingrun ;
Ghori, Mohammed J. R. ;
McGinnis, Ralph ;
McLaren, William ;
Takeuchi, Fumihiko ;
Grossman, Sharon R. .
NATURE, 2010, 467 (7311) :52-58
[2]   THE COMBINATION OF ESTIMATES FROM DIFFERENT EXPERIMENTS [J].
COCHRAN, WG .
BIOMETRICS, 1954, 10 (01) :101-129
[3]   Genome-wide association studies: implications for multiethnic samples [J].
Cooper, Richard S. ;
Tayo, Bamidele ;
Zhu, Xiaofeng .
HUMAN MOLECULAR GENETICS, 2008, 17 :R151-R155
[4]  
Davies R. B., 1980, APPL STAT
[5]   VIEWPOINT Missing heritability and strategies for finding the underlying causes of complex disease [J].
Eichler, Evan E. ;
Flint, Jonathan ;
Gibson, Greg ;
Kong, Augustine ;
Leal, Suzanne M. ;
Moore, Jason H. ;
Nadeau, Joseph H. .
NATURE REVIEWS GENETICS, 2010, 11 (06) :446-450
[6]   Meta-analysis methods for genome-wide association studies and beyond [J].
Evangelou, Evangelos ;
Ioannidis, John P. A. .
NATURE REVIEWS GENETICS, 2013, 14 (06) :379-389
[7]   Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of Genome-wide Association Studies [J].
Han, Buhm ;
Eskin, Eleazar .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 88 (05) :586-598
[8]   General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies [J].
Lee, Seunggeun ;
Teslovich, Tanya M. ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) :42-53
[9]   Optimal tests for rare variant effects in sequencing association studies [J].
Lee, Seunggeun ;
Wu, Michael C. ;
Lin, Xihong .
BIOSTATISTICS, 2012, 13 (04) :762-775
[10]   Meta-analysis of gene- level tests for rare variant association [J].
Liu, Dajiang J. ;
Peloso, Gina M. ;
Zhan, Xiaowei ;
Holmen, Oddgeir L. ;
Zawistowski, Matthew ;
Feng, Shuang ;
Nikpay, Majid ;
Auer, Paul L. ;
Goel, Anuj ;
Zhang, He ;
Peters, Ulrike ;
Farrall, Martin ;
Orho-Melander, Marju ;
Kooperberg, Charles ;
McPherson, Ruth ;
Watkins, Hugh ;
Willer, Cristen J. ;
Hveem, Kristian ;
Melander, Olle ;
Kathiresan, Sekar ;
Abecasis, Goncalo R. .
NATURE GENETICS, 2014, 46 (02) :200-+