Variational approximations in discrete nonlinear Schrodinger equations with next-nearest-neighbor couplings

被引:18
作者
Chong, C. [1 ]
Carretero-Gonzalez, R. [2 ,3 ]
Malomed, B. A. [4 ]
Kevrekidis, P. G. [5 ]
机构
[1] Univ Stuttgart, Inst Anal Dynam & Modellierung, D-70178 Stuttgart, Germany
[2] San Diego State Univ, Computat Sci Res Ctr, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Nonlinear Schrodinger equation; Solitons; Variational approximation; Bifurcations; Nonlinear lattices; Non-nearest-neighbor interactions; NONLOCAL DISPERSIVE INTERACTIONS; SOLITONS; SNAKING;
D O I
10.1016/j.physd.2011.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solitons of a discrete nonlinear Schrodinger equation which includes the next-nearest-neighbor (NNN) interactions are studied by means of a variational approximation (VA) and numerical computations. A large family of multi-humped solutions, including those with a nontrivial intrinsic phase structure, which is a feature particular to the system with the NNN interactions, are accurately predicted by the VA. Bifurcations linking solutions with the trivial and nontrivial phase structures are captured remarkably well by the analysis, including a prediction of the corresponding critical parameter values. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1205 / 1212
页数:8
相关论文
共 21 条
[1]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[2]   Ring vortex solitons in nonlocal nonlinear media [J].
Briedis, D ;
Petersen, DE ;
Edmundson, D ;
Krolikowski, W ;
Bang, O .
OPTICS EXPRESS, 2005, 13 (02) :435-443
[3]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89
[4]   Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrodinger lattices [J].
Chong, C. ;
Carretero-Gonzalez, R. ;
Malomed, B. A. ;
Kevrekidis, P. G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) :126-136
[5]   VARIATIONAL APPROXIMATIONS OF BIFURCATIONS OF ASYMMETRIC SOLITONS IN CUBIC-QUINTIC NONLINEAR SCHRODINGER LATTICES [J].
Chong, Christopher ;
Pelinovsky, Dimitry E. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05) :1019-1031
[6]  
CHRISTODOULIDES DN, 2002, PHYS REV E, V65
[7]   Approximation of Solitons in the Discrete NLS Equation [J].
Cuevas, Jesus ;
James, Guillaume ;
Kevrekidis, Panayotis G. ;
Malomed, Boris A. ;
Sanchez-Rey, Bernardo .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :124-136
[8]   Effects of nonlocal dispersive interactions on self-trapping excitations [J].
Gaididei, YB ;
Mingaleev, SF ;
Christiansen, PL ;
Rasmussen, KO .
PHYSICAL REVIEW E, 1997, 55 (05) :6141-6150
[9]   Stability of multiple pulses in discrete systems [J].
Kapitula, T ;
Kevrekidis, PG ;
Malomed, BA .
PHYSICAL REVIEW E, 2001, 63 (03)
[10]   Variational solutions for the discrete nonlinear Schrodinger equation [J].
Kaup, DJ .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (3-4) :322-333